ORNL-tr--5055

DE84 003447

ORNL-tr-5055

VDI 2230: SYSTEMATIC CALCULATION OF HIGH DUTY BOLTED JOINTS

VDI Society for Design and Development, Committee on Bolted Joints

Translated from the German.* Issued by the Verein Deutscher Ingenieure (VDI), VDI Richtlinien (Düsseldorf), October 1977, 56 pages.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

* By LANGUAGE SERVICES, Knoxville, Tennessee

It has been reproduced from the best available copy to permit the broatiest possible availability.

.

VDI-GUIDELINE VDI 2230: Systematic Calculation of High Duty Bolted Joints Contents: Page Foreword 4 1. Scope 2. Calculation - 6 2.1. Calculation Process 10 2.2. Steps in Calculation 16 3. Load and Deformation Analysis and Derivation of 3.1. Elastic Resilience or Spring Constant 21 3.1.1. Resilience of Bolts 21 3.1.2. Resilience of Directly-stacked, Clamped Sleeves and Plates 23 3.1.3. Resilience of Bent Plates and Flanges 31 3.2. Load and Deformation Conditions in 3.2.2. Variation in Initial Clamping Force Resulting from Remaining Deformation 3.2.3. Effects Caused by the Type of Load 3.3. Force and Deformation Conditioning in the Case of

12.00

£

Page 2 3.3.1. Load Ratio for Flanges and Flange-like 4. Influencing Factors ... 63 4.2. Minimum Engagement Depth; Strength of Bolt-Nut 4.3. Contact Pressure on Bolt Head and Nut Surfaces 45 4.5. Fatigue Strength 66 4.6.2. Scattering of Initial Clamping Load in Tightening 69 5. Calculation Examples 80 5.1. Calculation of a Bolted Joint between Piston and Piston Rod in a Hydraulic Cylinder as an Example of Concentric Clamping and Concentric 5.1.1. Basic Conditions 80 5.1.2. Calculation Process 81 5.2. Calculation of Bolts of a Positive-acting Clutch as an Example of Bolt Loading with Transverse Force... 85 5.2.1. Basic Conditions 85

.

.....

٠

5.3. Calculation of a Flywheel Fastening Using a Central
Bolt as Example of Bolt Loading with Torsion
Shearing
5.3.1. Basic Conditions 89
5.3.2. Calculation Process
5.4. Calculation of a Big-end Bearing Cover Joint
as an Example of Eccentric Clamping and Eccentric
Loading
5.4.1. Basic Conditions
5.4.2. Calculation Process
5.5. Calculation of Cylinder Cover Joint as Example
for Eccentric Clamping and Loading
5.5.1. Basic Conditions
5.5.2. Calculation Process
5.6. Calculation of a Flange Joint as an Example of the Bolt
5.6. Calculation of a Flange Joint as an Example of the Bolt Calculation for Non-directly Stacked Plates 107
5.6. Calculation of a Flange Joint as an Example of the Bolt Calculation for Non-directly Stacked Plates 107 5.6.1. Basic Conditions
5.6. Calculation of a Flange Joint as an Example of the Bolt Calculation for Non-directly Stacked Plates 107 5.6.1. Basic Conditions
5.6. Calculation of a Flange Joint as an Example of the Bolt Calculation for Non-directly Stacked Plates 107 5.6.1. Basic Conditions
5.6. Calculation of a Flange Joint as an Example of the Bolt Calculation for Non-directly Stacked Plates 107 5.6.1. Basic Conditions
5.6. Calculation of a Flange Joint as an Example of the Bolt Calculation for Non-directly Stacked Plates
5.6. Calculation of a Flange Joint as an Example of the Bolt Calculation for Non-directly Stacked Plates
5.6. Calculation of a Flange Joint as an Example of the Bolt Calculation for Non-directly Stacked Plates
5.6. Calculation of a Flange Joint as an Example of the Bolt Calculation for Non-directly Stacked Plates
5.6. Calculation of a Flange Joint as an Example of the Bolt Calculation for Non-directly Stacked Plates
5.6. Calculation of a Flange Joint as an Example of the Bolt Calculation for Non-directly Stacked Plates
5.6. Calculation of a Flange Joint as an Example of the Bolt Calculation for Non-directly Stacked Plates

•

Division of Design Committee on Bolted Joints VDI Design Handbook

Foreword

The present guideline (VDI 2236) is intended to inform practical designers about the very latest findings in the field of the calculation of bolted joints, and, with the recommendation of a systematic calculation process, to offer them aid in the often difficult task of correctly designing bolted joints.

Along with the treatment of the factors in concentrically clamped and concentrically loaded bolted joints normally presented in the literature, solution formulations are developed here for eccentrically clamped and/or eccentrically loaded joints, which occur much more frequently in practice: the formulations have been supported by measurements and recent research. Tables, diagrams and examples facilitate the suggested systematic calculation process.

Due to the great number of possible configurations and interactions, the determination of external forces and moments affecting bolted joints could not be treated in this guideline. On the other hand, the effects which result from the scattering of the initial stress forces when bolted joints are tightened were considered, whereby the given values are based on series of measurements.

The guideline VDI 2230 is the result of many years of collaboration in the Committee on Bolted Joints of the former VDI Design Group (ADKI) and of the Design Division of the present VDI Association for Design and Development. The present second edition represents the revision of the first edition of December 1974 and takes into account the experience and

Page 4

findings ecquired in working with the guideline. The leadership of the committee lay in the hands of Dr. G. Junker of Koblenz. To him and the following gentlemen, who made important contributions to the development of this guideline, are due thanks for their voluntary efforts: Dr. W. Benz, Nürtingen Mr. H. Dreger, Herborn, Grad. Eng. Prof. K. Federn, Berlin, D. Eng. Dr. A. Grotewohl, Wolfsburg Dr. E. Haibach, Darmstadt-Eberstadt Dr. K. H. Illgner, Neuss From the VDI Office: Mr. P. Selbmann, Düsseldorf, Grad. Eng. Mr. M. Uhrmann, Düsseldorf, Grad. Eng. VEREIN DEUTSCHER INGENIEURE

ISOCIETY OF GERMAN ENGINEERS]

1. Scope

The guideline VDI 2230 deals with bolted joints which are to bear static or alternating working loads and which are to be created using high-strength bolts. The guideline should be used above all for joints the failure of which can cause serious damage.

The specifications in this guideline are valid for steel bolts within the temperature range of -40° C to $+300^{\circ}$ C in which neither embrittlement due to cold nor creep stress of the bolt steels is

expected. Above 120° C the adjusted material characteristics must be used for calculations.

Extreme operating stress such as high and low temperatures outside the given limits, corrosion, and non-determinable impact stress are not treated in this guideline.

The following DIN standards, guidelines and special publications can be consulted if necessary:

DIN 105, 6.68: Steel in Building Construction, Calculation and Structural Design;

DIN 120 Bl. 1, 11.36: Calculation Principles for Steel Structural Parts of Cranes and Crane Runways (DIN 15018 in preparation);

DIN 2505, 10.64: Tentative Standard: Calculation of Flange Joints; DASt-Guidelines 010: Application of High Tensile Bolts in Steel Construction (Published by the Deutscher Ausschuß für Stahlbau, Stahlbau-Verlag GmbH., Cologne: 1974);

AD Bulletin B 7, Jan. 68: Calculation of Pressure Vessels: Bolts:

TRD 309, Technical Rules for Boilers: Bolts (Published by the Vereinigung der Technischen Überwachungsvereine e. V., Essen, Beuth-Vertrieb, Berlin, Cologne);

DV 804 (BE) Ausg. 1960: Service Regulations of the German Railway System: Calculations for Steel Railway Bridges.

2. Calculation

- -

A bolted joint is a separable joint of two or more parts bolted by means of one or more bolts. The bolts and their tensile load must be dimensioned so that the resulting joint fulfills the intended function and withstands the working loads that occur.

Examples:

---In the case of the bolting of the head of a pressure vessel, the clamping force of the bolts is to be established such that the working load caused by the internal pressure is absorbed, and the desired sealing function is attained.

----In big-end bearing cover bolted joints subjected to vibrations in reciprocating engines, the clamping force of the bolts must be set so high that under inertia forces no one-sided lift-off on the interface or slippage occurs. Both would trigger progressive destruction, etc., by automatic unbolting and by fatigue failure of the bolts. Since the clamping forces must also cause the deformation of the stressed bearing bushings until they completely rest on the interface, the clamping forces can be a multiple of the working loads resulting from the inertia forces.

----In the case of front-end bolting of a disk flywheel on an axle, the clamping force of the bolts must be sufficient to produce with certainty friction contact in the interface necessary for the transmission of the resulting moments.

The calculation of a bolted joint is based on the working load F_{∞} which acts externally on the joint. This working load and the elastic deformation of the structural part caused by it bring about at the individual bolting point an axial load F_{∞} , a transverse force F_{∞} , a bending moment M_{∞} , and sometimes a turning moment (torque) M_{τ} . Due to the variety of designs for structural parts and bolted joints, the difficult and generally complicated load and deformation analysis which leads to the determination of these basic variables cannot be the object of this guideline. This task must be solved using the tools of statics and elastomechanics [22;23;24]. This is especially true for multi-bolted joints. Only in the case of simple, symmetric, and

Page 7

relatively rigid joints can the basic variables be obtained by simple analysis of the working load. The basic variables F_{AP} , F_{DP} , H_{PP} , and H_{T} are assumed from now on to be known values.

Figure 1: Joint diagrams for a joint without external working load a) with clamping to an initial preload F_m b) with loss of preload F_Z due to embedding c) with deviations of the initial

preload due to tightening scatter and loss of preload by embedding

Figure 2: Joint diagram for the general case of any kind of axial working load F_{a}

The object of the calculation of the bolted joint is to determine the necessary bolt dimensions by considering the following influencing factors:

the second s

and a second a second

----Strength class of the bolt; ----Reduction of the initial clamping load in the interface or parts of the interface by the working load [1,2,3,4]; ----Reduction of the initial clamping load by embedding phenomena [1,5]; ----Scattering of the preload during tightening [1,6]; ----Endurance strength with alternating load [1,2,3,4]; ----Compressive stress of clamped parts by bolt head and/or nut [7].

For eccentrically loaded joints no generally valid method of calculation can be given according to the current state of knowledge because the available calculations and measurements of existing joints have not yet been converted into practically applicable methods of computation. For certain joints, however, mathematical formulations which have in part been varified experimentally are described in this guideline under simplified assumptions. If the given conditions are not met or if the simplified assumptions do not hold up to a check in the individual case, then the necessary preload must be determined through experimentation. This can be done by measuring the changes in the bolt force occurring under the working load using wire strain gauges and applying the equations and diagrams contained in this guideline (see Sec.3.2.4.5.). Such measurements can even be done in the development stage using a model or prototype. In such cases a comparison of similarly formed, existing parts can also lead to conclusions. Special cases also can be dealt with using the finite elements method. especially if they can be reduced to two-dimensional problems.

In Sec. 2.1. the calculation process is developed, and in Sec. 2.2.

it is divided into steps for practical application.

The derivation of equations for the different quantities and factors is not taken up until Sec. 3. to provide a better view of the calculation process. References to corresponding subsections, equations and diagrams in this section are made as needed at each calculation step.

2.1. Calculation Process

The calculation process and the development of the dimensioning equations can be illustrated by the joint diagram which is given in its classic form in Figure 1; its modifications for various stress conditions (cf. Figure 2) are more precisely derived and described in Sec. 3.

If a bolt is tightened during assembly to the initial clamping load f_m , then it is elongated by f_{mm} , whereas the bolted parts are shortened by f_{mm} , Figure 1a. After completion of assembly, embedding phenomena appear (especially under the effect of alternating working loads) as a result of the smoothing of technical roughness. The elastic length variation $f_{mm} + f_{mm}$ is reduced by the amount of embedding f_z . As a result, the initial clamping load F_m decreases by f_z , Figure 1b (see also Sec. 3.2.2.).

The initial clamping load F_m is subjected during tightening--depending on the method of tightening and the friction conditions--to a scattering of the values between F_m min and f_m max (see Sec. 4.6.2.).

A measure of this scattering is the tightening factor α_{inj} , Figure ic:

 $\alpha_{n} = F_{m} m_{mn} / F_{m} m_{mn}$ (1) If a joint is clamped at the least initial clamping load $F_{m} m_{nn}$ and

(5)

a drop in the initial clamping load F_z occurs due to embedding, there remains in the worst case a preload F_v . The efficient clamping force F_w in the interface is equal to the preload F_v .

In operation, the bolted joint loaded with F_{ν} receives additional tension from the axial component F_{ν} of the working load F_{ν} , Figure 2. Thereby the resilience conditions change in general, and with them the pitch and form of the deformation charateristics as compared with Figure 1.

The axial force F_{∞} causes the additional force F_{∞} in the bolt and a reduction of the clamping force F_{∞} at F_{∞} on the residual clamping force $F_{\infty \infty}$. The additional load $F_{\infty \infty}$ is proportional to the axial component F_{∞} of the working load. The proportionality factor Φ is called the force ratio and is dependent upon the elastic resilience of the clamping and clamped parts and accordingly on the stress conditions (load introduction, eccentricity of the clamping and loading). Thus the following summations:

$F_{\Xi A} = \bar{\Phi} f_{A}$	(2)
$F_{\alpha} = f_{\alpha} + F_{\alpha}$	(3)
$F_{PA} = (1-\bar{a}) F_{A}$	(4)

and $F_{KR} = F_V - F_{PA} = F_V - (1-0) F_{A_P}$

í

The bolted joint is designed in such a way that the residual clamping force F_{KRR} is at least equal to the required clamping force F_{KRRR} which insures the function of the bolted joint. This force must prevent one-sided lift-off in the interface and must provide sealing requirements or friction contact. Thus:

 $F_{KR} \ge F_{Kapped}$ (6)

Analogously we can define a required clamping force $F_{v=rr}$. For this:

 $F_{Var+} = F_{Kar+} + F_{PA} = F_{Kar+} + (1-\overline{a}) F_{A} \leq F_{V_{A}}$ (7) Thereby the minimum clamping force can be thus computated (see Figure 2):

 $F_{m \min} = F_{vort} + F_z = F_{Kort} + (1-0) F_A + F_z, \qquad (8)$

Taking into consideration the scattering during tightening, the maximum initial clamping force for which the bolt must be designed is

 $F_{\rm M} = \alpha_{\rm A} F_{\rm M} = \alpha_{\rm A} [F_{\rm Kert} + (1-\bar{\Phi}) F_{\rm A} + F_{\rm Z}], \qquad (9)$

The required bolt diameter is determined such that, considering the selected strength class and the friction ratios in the threads (see Table 5), the axial clamping force of the bolt F_{∞} is equal to or greater than $F_{m,\max}$. Here F_{∞} signifies the appropriate clamping force for the bolt which has been chosen as the measuring standard. The clamping force, together with the torsional stress occuring during tightening, utilizes the minimum elastic limit to 90% ($\sigma_{rod} = 0.9\sigma_{0.2}$; see Sec. 4.6.1.).

Thus:

Fup = Fm max

(10)

Tables 1 to 4 contain the axial clamping force values for 90% of the elastic limit utilization due to σ_{rec} , and indeed for full shank and reduced shank bolts of the strength classes 8.8, 10.9 and 12.9 in the dimension range of M 4 to M 30. [Note: The nominal values for the elastic limit form the basis of Tables 1 to 4 according to ISO/DIS 898 Part (Teil) 1 which supercedes DIN 267 p. (Blatt) 3. The nominal values have a security range from 1.6% to 4% against the minimum values. For the use of the tables, see also Sec. 4.6.2.1.3

The tightening torque $M_{=p}$ belonging to the corresponding $f_{=p}$ can be taken from the same tables. If we must be sure that this torque is not to be exceeded because of the imprecision of the torque wrench, a lower

(11)

(14)

torque must be given as the assembly torque.

In the case of determining the tightening factor $\alpha_{\alpha_{1}}$ $\pm 10\%$ has been accepted for the partial error for the tightening torque. Therefore the assembly torque M_{α} can be determined as

 $N_{A} = 0.9 N_{BD}$

If such a designed joint, which is clamped at $F_{=p} = F_{m} \max_{n=1}$ is being loaded for the first time, and if the initial preload is not diminished by embedding procedures, then the maximum bolt strength is

 $F_{\rm max} = F_{\rm mp} + F_{\rm BA} = F_{\rm mp} + \bar{\Phi} F_{\rm A}, \qquad (12)$

Since according to the definition the bolt has been loaded to 90% of the elastic limit by f_{mp} , the bolt is not stressed beyond its elastic limit at the initial loading of the joint if the following is true:

 $F_{BA} = \Phi F_A \leq 0.1 \sigma_{0.2} A_B, \qquad (13)$

In the case of reduced shank bolts, $A_{\rm B}$ is replaced by $A_{\rm T}$. If $F_{\rm BB}$ is greater, then the design of the joint must be improved if possible, or a larger dimension, a higher strength class for the bolt or a more precise tightening process must be chosen. If the bolt material is ductile enough and, as in the case of tightening processes which go beyond the elastic limit, if sufficient ductile lenghts are present, a slight over-extension of the elastic limit is permissible in the individual case. Attention should be paid to the consequences described in Sec. 3.2.3.1. and in Figure 15.

If f_A is a load which changes with time and whose dimensions change between the upper force limit f_{AB} and the lower force limit f_{AB} , then the bolt is alternately stressed by the force:

 $F_{\text{BAG}} = \pm \Phi \frac{F_{\text{AG}} - F_{\text{BH}}}{2}$

which fluctuates around a mean value:

(15)

$$F_{\text{cm}} = F_{\text{v}} + \overline{0} \underbrace{F_{\text{cm}}}_{=} + \underbrace{F_{\text{cu}}}_{=}$$

In the simplest case of a working load increasing from zero to F_{α} , the equations are simplified as

$$F_{\text{DAm}} = \pm \bar{\Phi} \frac{F_{\text{A}}}{2} \tag{16}$$

and

$$F_{\rm em} = F_{\rm V} + \Phi \frac{F_{\rm A}}{2} \tag{17}$$

The endurance strength of a bolt must not be exceeded. We must keep in mind that bending deformations of the bolt can be caused by distorted load-bearing surfaces which can result in additional alternating stress on the bolt (see Sec. 3.2.4.3.).

In order to avoid a preload loss due to creep of the clamped material, the contact pressure under the bolt head or the nut, in its bearing area A_r , must not surpass the limit of contact pressure p_{\odot} of the clamped material (see, Sec. 2.2., Calculation Step <u>S 10</u>). Since according to the equations (12) and (13), the elastic limit of the bolt material is not exceeded with the maximum bolt strength $F_{\odot max}$, the calculation is checked with:

$$\frac{F_{m}}{A_{P}} \stackrel{\leq}{=} \frac{F_{m}}{A_{P}} \stackrel{/ 0.9}{=} \stackrel{\leq}{=} \rho_{0} \tag{18}$$

Under certain conditions, tightening procedures which reach or exceed the elastic limit can be used for assembly (see Sec. 4.6.). Their introduction leads to a situation in which the bolt is further lengthened plastically by application of the working load (similar to Fig. 15). Therefore, special demands must be placed on the ductility of the material and on the free extension length. In lieu of the check f_{\odot} max $\stackrel{\leq}{=} \sigma_{\odot,\infty} A_{\odot}$ according to equations (12) and (13), the test must show how far the bolt is plastically lengthened by the working load and how

often reuse can be permitted.

In the case of this tightening process, the scattering of the preload is produced only from the tolerance of the elastic limit. Since the elastic limit is reached or exceeded by the combined tension and torsional stress σ_{read} caused by the clamping load and the thread torque, only a negligibly small effect of scattering of the friction coefficient appears. The required bolt diameter is then determined without consideration of the tightening factor σ_{e} from $F_{m,min}$ according to Equation (8).

Since the values in Tables 1 through 4 are designed for an axial clamping force with 90% utilization of the elastic limit, the required bolt dimension can be chosen from these tables, taking into account the selected strength class and the given thread friction coefficients, for:

F== 10.9 2 Fm min.

(19)

The greatest possible clamping force in such an assembled joint is attained with bolts whose elastic limit lies on the upper end of the standardized tolerance range.

For all considerations concerning surface loading and elastic deformation of clamped parts (e.g., bearing housing deformation), the clamping force for the selected bolt, multiplied by the ratio of maximum

to minimum elastic limit, must therefore be the basis of the maximally possible bolt strength F_{σ} max.

$$F_{\text{max}} = \frac{\sigma_{0.2 \text{ max}}}{\sigma_{0.2}} F_{\text{max}} f_{\text{max}} / 0.9 \tag{20}$$

2.2. Steps in Calculation

The working load F_P with its components F_A and F_B at the bolting position must be given as the basic conditions.

The design and assembly conditions are often arbitrary or influenceable; they determine the needed values for embedding and for scattering of the preload. Under observation of the many derivations and comments in Sec. 3., the calculation process can be accomplished as follows in steps <u>S 1</u> to <u>S 10</u>.

<u>S 1</u>. Rough determination of the bolt diameter d (occasionally with the aid of Table 6), of the clamping length ratio I_{w}/d , and rough determination of the median bearing stress under the bolt head with

$$p = \frac{F_{mn}}{A_{p}} \stackrel{f}{=} \frac{1}{2} \frac{0.9}{2} \stackrel{f}{=} p_{m}$$

 $f_{\pm\pm\pm}$ is found from Tables 1 to 4 for the appropriate bolt dimension and strength class. Recommendations for the allowable bearing stress p_{\pm} of several materials are contained in Table 14. If p_{\pm} is exceeded, the design conditions must be altered (if need be by means of the placement of a washer of sufficient strength and dimensions). In this case, I_{\pm}/d must be determined again, and the rough dimensioning must be checked. <u>§ 2</u>. Determination of the tightening factor α_{\pm} , taking into account the chosen tightening procedure and lubrication or surface condition according to Table 17 (is not necessary for any tightening procedures which reach or exceed the elastic limit) (see Sec. 4.6.2.2. and 4.6.2.3.).

<u>S.3</u>. Determination of the required minimum clamping force $F_{K=r+r}$, taking into account the following individual conditions:

Friction contact for taking up any present transverse force component F_{co} or for taking up any present moment H_{T} .

Sealing functions for known pressures and surfaces as well as material characteristics of sealing elements.

No one-sided lift-off with eccentric loading and/or clamping. With simplified assumptions a formulation for F_{form} is possible (see Sec. 3.2.4. with Equation (78)).

The maximum value determined for $F_{K = r \cdot r}$ should be put into the dimensioning equations.

<u>S</u> 4. Determination of the embedding amount f_z from Table 7, and rough determination of the force ratio Φ_{c} for load introduction under the head from Table 8, and the determination of the elastic resilience δ_{c} of the clamped parts from Table 9 or Sec. 3.1.2. For other rigidity conditions, as presented in Figure 5, intermediate values can be interpolated.

Thus determination of the preload loss by embedding:

 $f_z = f_z \underline{oI_w}$ The effect of eccentric clamping and/or loading is hereby neglected.

<u>\$5.</u> Determination of the force ratio **b**.

a) In the simplest cases of concentric clamping and concentric exial loading of the joint it must be assumed that the axial force F_A is introduced in half intensity of the clamped parts. Therefore according to Sec. 3.2.3.2. and Figure 17b and with n = 1/2, the force ratio becomes $\Phi = \Phi_n = n \Phi_K = 1/2 \Phi_K$.

b) In the case of axial load application, an assessment of the load introduction zone can be possible or even necessary on the basis of

the geometric form of the clamped parts in special cases, Figure 17. If thereby nI_{k} is the portion of the clamped parts section which is unloaded by the working load, then $\Phi = \Phi_n = n \Phi_k$; $(0 < n \leq 1)$ (see Sec. 3.2.3.2.)

c) In the case of eccentric clamping and/or eccentric load application, the following is true:

 $\tilde{\Phi} = \tilde{\Phi}_{en} = \pi \frac{\delta_{e}^{e+e}}{\delta_{e} + \delta_{e}^{e+e}}$

(see Sec. 3.2.4.1. Equation (68b)).

In the event that an assessment of the situation of the load introduction level is not possible or necessary, then for simplicity p = 1/2 can be set likewise.

d) In the case of flange-like parts which are not in contact, the inverse resilience of the flange or of the covering plates (also cylinder head) is to be considered. Thus $\Phi = \Phi_{ri}$ (see Sec. 3.3.1. Equations (104) to (106)).

<u>5.6</u>. Determination of the required bolt dimension.

a) For all tightening procedures in the elastic field of the bolt, the following is valid:

 $F_{M max} = \alpha_{A} [F_{Kar+} + (1 - \bar{a}) F_{A} + F_{z}].$

Seek a bolt (diameter and strength class) from Tables 1 through 4 for which

Fop > Fm max

If Tables 1 through 4 are not applicable for specially formed bolts (see Example 5.3), then the clamping forces must be calculated according to Equations (114) to (118) and the assembly torque according to Equation (124). Here the friction coefficient is dependent upon the selected lubrication and surface conditions (Table 5). Simultaneously, we can

look up in the tables the tightening torque N_{mp} associated with the clamping force F_{mp} . For assembly, the mean tightening torque

MA = 0.9 Map

is suggested.

b) For tightening procedures which reach or which exceed the elastic limit, the following is valid:

 $F_{\rm H \ min} = F_{\rm Kourf} + (1 + \bar{0}) F_{\rm A} + F_{\rm Z},$

Seek a bolt (dimensions and strength class) for which

Fmp / 0.9 > Fm min

Since the scattering of the friction coefficient is negligible, the clamping force values in Table 2 (for a mean friction coefficient μ_{σ} = 0.125) can be used (for comments, see Sec. 4.6.).

<u>S.7</u> Precise determination of the clamping length ratio I_{μ} / d and controls of Φ_{μ} and δ_{μ} (Tables 8 and 9) or repetition of Steps <u>S.5</u> and <u>S</u>

<u>58</u> Test for compliance with allowable bolt strength.

The allowable bolt strength is not exceeded if $\emptyset \ F_A < 0.1 \ \sigma_{O-2} \ A_B$ ($\sigma_{O-2} \ A_B$ see Tables 11 and 12). For reduced shank bolts, the following is valid accordingly: $\emptyset \ F_A \leq 0.1 \ \sigma_{O-2} \ A_T$. In the case of tightening procedures which reach or exceed the elastic limit, this test is replaced by another which tests whether an additional plastic lengthening of the bolt by means of the working load can be permitted, how long the bolt is plastically lengthened, and how often it can be reuse? (see also Sec. 4.6.).

<u>S.9</u> Determination of the dynamic fatigue stress of the bolt

$$\sigma_n = \phi \frac{F_{nn} - F_{nu}}{2 A_n} \leq \sigma_n$$

(A₃ core cross section)

In the case of ectentric loading, the bending tension must also be considered (see Sec. 3.2.4.3. Equation (100) for $\sigma_{\rm pap}$).

In the case of increasing working load, this step is simplified to:

$$\sigma_{a} = \frac{\sigma_{aa}}{2} = \tilde{\omega} \frac{F_{a}}{2A_{a}} = \sigma_{a}$$

Optimum values for the allowable stress amplitude σ_n of the endurance strength $\sigma_m \pm \sigma_n$ can be taken from Table 13 (see Sec. 4.5.). If this condition is not fulfilled, then the design must be improved whenever possible by using a bolt of a larger diameter or of greater endurance strength. Greater endurance strength can be achieved, for example, by tempered threading.

<u>S 10</u>. Calculation of the bearing stress under the bolt and nut heads according to Equation (18).

$$p = \frac{F_{\text{max}} / 0.9}{A_{\text{max}}} \stackrel{\leq}{=} p_{\text{max}}$$

In the case of determination of the bolt or nut head bearing area A_{r} , the chamfering in the hole must be considered.

Recommendations concerning the allowable bearing stress p_{σ} of several materials are contained in Table 14.

For tightening procedures which reach or surpass the elastic limit, the following is valid (see Sec. 4.6.2.2.):

 $p = \frac{F_{max}}{A} \frac{10.9}{\sigma_{0.2}} \frac{\sigma_{0.2}}{\sigma_{0.2}} \leq p_{\rm cs}$

<u>3. Load and Deformation Analysis and Derivation of the Principles of</u> <u>Calculation</u>

In this section, the quantities which are used for the development of the dimensioning Equations (8) and (9) in Sec. 2. are derived and their modifications which depend on stress conditions are described. The force and deformation conditions of the bolted joints are

____ ____

investigated; both the elastic and the plastic behavior of the elements used will be considered.

3.1. Elastic Resilience or Spring Constant

The elastic behavior of the elements of a bolted joint is characterized by the elastic resilience δ or by the rigidity C_{-}

In most cases, the elastic deformation f of a body is proportional to the loading force f:

 $f = \delta F. \tag{21}$

The proportionality factor δ is designated as elastic resilience and is determined by:

 $\delta = f / F_* \tag{22}$

The reciprocal value of the elastic resilience is called the spring constant:

 $C = 1 / \delta = F / f,$ (23)

Depending on the application (series or parallel connection of elastic elements), the usage of δ or \mathcal{E} leads to formally simpler and clearer equations. Since in the case of bolted joints tandem connections of elastic elements are most commonly found, preference is given to the elastic resilience δ in the following.

Using Equation (23), however, all equations can easily be converted to the style used particularly in the older literature with the spring constant C.

3.1.1. Resilience of Bolts

The bolt consists of a number of single elements which are easily replaceable by cylindrical shapes of varying length I_1 and varying cross section A_1 , Figure 3. If E_8 is Young's modulus of the bolt material,

(25)

then the following is valid for the elastic elongation of such a single element under force F:

$$f_{\pm} = \frac{I_{\pm} F}{E_{\odot} A_{\pm}}$$
(24)

Figure 3: Partition of a bolt into single prismatic elements, for which the resilience δ can be determined.

With the Equations (22) and (24), there follows for the elastic resilience of a cylindrical single element:

$$\delta_{\perp} = \frac{f_{\perp}}{F} = \frac{I_{\perp}}{E_{\Box} A_{\perp}}$$

In the case of the bolt, the cylindrical elements are connected one after the other so that the total elastic resilience δ_{σ} is obtained by addition of the resiliencies of the single cylindrical elements:

$$\delta_{\mathbf{B}} = \delta_{\mathbf{K}} + \delta_{\mathbf{x}} + \delta_{\mathbf{z}} + \dots + \delta_{\mathbf{B}} \tag{26}$$

Here δ_{κ} is the elastic resilience of the head and δ_{Θ} is the elastic resilience of t'e screwed-in threaded part including the nut, Figure 3. The resilience of non-screwed-in threaded parts is determined by using the core cross section A_{\Im} . Based on experience, the elastic resilience of the head of standardized hexagonal and hexagonal recess bolts and that of the screwed-in thread which participates in the deformation is

Page 23

approximately as great as that of cylinders of an external thread diameter d and of a length 0.4 d. Therefore these elastic resiliencies are obtained as:

$$\delta_{\kappa} = \delta_{\alpha} = \underbrace{0.4 \, d}_{E_{\alpha} \, R_{N_{\alpha}}} \tag{27}$$

In Equation (27) $A_{N} = d_{Z} \pi/4$ is the nominal cross section of the bolt.

Greater or smaller head and thread resiliencies than those of standard bolts must be considered by a correspondingly modified factor (=0.4).

3.1.2. Resilience of Directly-stacked, Clamped Plates

3.1.2.1. Cross Sectional Areas Of Substitutional Pressure Bodies in Sleeves and Plates

For the determination of the elastic resilience of sleeves with an external diameter D_{A} which is less or equal to the diameter of the head bearing area d_{K} , the cross sectional area

 $A_p = \pi/4 \ (D_p^2 - D_p^2)$ (28) and Young's modulus E_p of the sleeve material must be inserted into

Equation (25).

1977 <u>– 19</u>25 s. <u>–</u>

The resilience of plates where $D_A > d_K$, Figure 4, cannot be precisely calculated in a simple fashion even in the case of concentric loading. On massive bodies and firmly stacked parts, various authors [8 to 13] have measured the deformations under conditions of concentric loading. Thereby resiliencies resulted which approximately correspond to those of cylindrical substitutional pressure bodies, the cross sectional areas A_{ere} of which can be calculated for two fields from D_A / d_K to a clamping length $I_K = 8 d$ with a high degree of precision in the following way, Figure 5 :

---- For sleeves with an external diameter D_A between d_R and $3 d_R$:

$$P_{\text{max}} = \pi/4 \left(d_{\text{m}}^2 - D_{\text{m}}^2 \right) + \pi/8 \left(\frac{D_{\text{m}}}{d_{\text{m}}} - 1 \right) \left(\frac{d_{\text{m}} I_{\text{m}}}{5} + \frac{I_{\text{m}}^2}{100} \right)$$
(29)

---For plates with a radial expansion $D_{m} > 3 d_{m}$;

$$P_{---} = T/4 \left[\left(d_{+} + \frac{I_{+}}{10} \right)^2 - D_{-}^2 \right]$$
(30)

<u>3.1.2.2.</u> Resilience with Concentric Bolt Arrangement and with Concentric Load Introduction

The elastic resilience o_p of the concentrically clamped parts is produced from the relation

$$\delta_{\mu} = \frac{1}{\rho_{\mu\nu\mu}} \tag{31}$$

The condition of the deformation of massive bodies as a prerequisite for the validity of this derivation is generally only valid for firmly stacked parts and not for thin layers of greater number which are not completely level. In this case the longitudinal resilience δ_{p} increases and can be experimentally determined, if necessary, depending upon the load.

Figure 4: Plate compressed on the hole edge as if by bolt head or nut. <u>3.1.2.3. Resilience with Eccentric Bolt Arrangement and Concentric or</u> <u>Eccentric Load Introduction in the Bolted Joint</u>

An eccentric load application on a bolted joint causes, along with

the longitudinal deformation of the substitutional pressure body, a bending deformation of the clamped parts which produces an additional longitudinal deformation and thus increases the longitudinal resilience of eccentrically clamped plates and sleeves as opposed to concentrically clamped ones. In order to demonstrate the tendencies, formulations are made under the following conditions and simplified assumptions: ---The clamped parts form a prismatic body.

---The clamped parts form a "bending body" in the interface cross section in which the interface pressure on the stressed bending side is greater than zero.

----All cross sections of this prismatic body remain plane under loading. A distribution of tension takes place in them.

----The bending rigidity of the bolt is much less than that of the substitutional bending body and is neglected.

These simplified assumptions are generally only allowable for bending bodies whose cross dimensions lie within the diameter $d_{K} + h_{min}$ of the interface area.

The bending body is depicted in Figure 6. It can be a section from a multi-bolted joint. The lateral distance b is then given by the bolt arrangement or by $d_{K} + b_{min}$.

the bolt eccentrically arranged around s at its axis of gyration 0-0 with a preload F_{ν} . The area $A_{\rm B}$ can be presented and calculated as a rectangle *b*-*c* minus the bolt hole. The axis of gyration at the area $A_{\rm B}$ is 0-0. The area $A_{\rm B}$ with the appropriate moment of inertia $I_{\rm B} = k_{\rm B}^2 A_{\rm B}$ is needed in Sec. 3.2.4.2. for the calculation of the clamping force $F_{\rm Kerr}$, which is required for the prevention of one-sided lift-off. [Note: With the use of $A_{\rm B}$, the bending resilience of the bolt is neglected.]

Given these assumptions, we get the following resiliencies which usually are valid for the deformation in the bolt axis S-S. These resiliencies are for the loading situation depicted in Figure 7:

a) In the case of concentric configuration of the bolts (distance of the bolt axis S-S from the axis of gyration O-O of the bending body s= 0) and, simultaneously, concentric load introduction (distance of the load point of application from the axis of gyration a = 0) corresponding to Equation (31):

$$6_{\rm F} = \frac{f}{F} = \frac{I_{\rm F}}{A_{\rm mrm} E_{\rm F}}.$$

b) In the case of eccentric bolt configuration in the distance s form the axis of gyration 0-0 of the bending body and load introduction in the eccentrically lying bolt axis S-S, thus a = s:

$$\delta_{\mu}^{\pi} = \delta_{\mu} \left(1 + \frac{s^2}{k_{\mathfrak{D}}^2 A_{\mathfrak{D}} / A_{\mathfrak{m}}} \right) \tag{32}$$

With the introduction of a length ratio λ for the eccentrically clamped, unloaded joint

$$\lambda = \underbrace{s / k_{\text{B}}}_{\sqrt{A_{\text{B}} / A_{\text{B}} - 1}}$$
(33)

Equation (32) is simplified to

 $\delta_{\mu} = \delta_{\mu} \left(1 + \lambda^2\right) \tag{34}$

c) In the case of eccentric bolt configuration in the distance *s* from the axis of gyration 0-0 of the bending body and of a load introduction in the distance *a* from the axis of gyration as the most general case:

$$\delta_{p}^{**} = \delta_{p} \left(1 + \frac{2}{k_{p}^{2} A_{p}} \int A_{ere} \right)$$
(35)

where, $\delta_{\mu}^{\mu\nu}$ is the quotient of the plate deformation $f_{\mu\mu}$ in the bolt axis and from the external force F_{μ} being applied in the distance a.

With the introduction of λ according to Equation (33) this becomes $\delta_{p}^{++} = \delta_{p} (1 + a/s \lambda^{2}).$ (36) Here the distance a must always be put in as positive.

The distance s is to be put in as positive if the bolt axis S-S and the load point of application A-A lie on the same side of the axis of gyration O-O and negative if the load point of application and bolt axis are located on opposite sides of the axis of gyration.

a a a companya a series and a series and a series of a series of the ser

and a second state of the first state of the

Figure 6: Bending solids and interfaces under interfacial pressure with eccentric clamping and loading.

ų į

Figure 7: Influence of the line of force on the elastic deformation of a "bending solid" according to Figure 6.

One must keep in mind that with unfavorable cross section conditions small eccentricities of the load introduction cause considerable lateral tilt due to which the resilience of the clamped parts constantly increases.

If by the eccentricity of the preload f_{\circ} and of axial bolt strength f_{\circ} the unloading in the interface on the stressed side becomes greater than the pressure preload, then a one-sided lift-off begins, whereby the elastic resilience of the clamped parts progressively increases. This condition is not considered in the case of the calculation of resilience and that of the force ratio derived from it because it is the purpose of this guideline to recommend the prevention of one-sided lift-off by the introduction of a sufficient minimum clamping force. The determination of the differential force $f_{\otimes \circ}$ and of the force ratio Φ_{\circ} is of interest then only in the area of one-sided lift-off.

The calculation can be considerably improved by consideration of local resilience of the surfaces of the interface under pressure and of the contact resilience in the sense of leveling of microgeomtrical roughness of these surfaces. These effects are of essential importance in the case of bolted joints which form a closed statically indeterminate structure with the parts to be joined, since the local resiliencies in the interface correct, in the favorable sense, the position of the appropriate point of zero moment—and with it the distance a. The one-sided lift-off occurs earlier in opposition hereto by the contact resilience in the interface. A calculation which takes these effects into consideration is basically possible; however, the calculation can be very complex.

3.1.3. Resilience of Bent Plates and Sleeves

In Figure 8 a symmetric plate under bending forces is depicted. Forces are acting on points A, P and S.

Figure 8: Stressed symmetric plates.

Case	Forces \bar{r} being applied in the Points	Relative Shift of Point S opposite Point P caused by the Forces <i>F</i>	Definition of the Elastic Resilience
	P and S	$f_1 = F \delta_1$	$\delta_1 = f_1 / F$
ъ	A and S	$f_2 = F \delta_2$	$\delta_2 = f_2 / F$
C	A and P	$f_3 = F \delta_3$	$\delta_{\Xi} = f_{\Xi} / F$

The resiliencies δ_1 , δ_2 and δ_2 are defined according to Figure 8. They are necessary for the calculation of the force ratio (see Sec. 3.3.1.). The calculation of the δ -values is very complicated. For definite forms there are experimentally established approximate solutions to which we will refer in the following:

The circular flange, Figure 9, is being loaded by forces F which can also be thought of as working in circles around the flange axis.

The elastic thickness variation of the flange is much less than the deformation as a result of inversion and can therefore be neglected. The elastic resilience of the flange can be described by a single quantity γ which is designated as inverse resilience. In the case of the loading of the flange by the force pairs *FF*, Figure 9, the cross section experiences inclinations at the angle 7. With $7 = f / a_{\rm F}$ it becomes

$$\mathcal{Y} = \frac{\gamma}{M} = \frac{1}{Fa_{\rm F}} = \frac{1}{Fa_{\rm F}^2} \tag{37}$$

From Equation (23) of the specifications DIN 2505 (Tentative Standard, pub. Oct. 1964) the inverse resilience can be derived as

$$\mathcal{Y} = \frac{d_2 + d_2}{4\pi E h N} \tag{38}$$

whereby according to Equation (27) in DIN 2505 for the loose flange

$$\# = 1/12 \ (d_{-} - d_{-} - 2d_{-}^{2}) \ h_{F}^{2} \tag{39}$$

and $h = h_{r}$.

Figure 9: Circular loose flange.

For the firmly prewelded flange, Figure 10, Equation (38) can be used as well; however, W is to be calculated with

$$W = 1/12 \left(d_2 + s_F \right) s_F^2 + 1/12 \left(d_a - d_2 - 2 d_{\perp}^2 \right) h_F^2 \qquad (40)$$

and $h = h_A$ is to be put in (see DIN 2505 [Tentative Standard, pub. Oct. 1964] Equations (24) to (26)).

Figure 10: Firm prewelded flange

Thereby for the nominal distances

$$NM > 500 : d_{L}^{2} = d_{L} / 2$$

$$NM < 500 : d_{L}^{2} = \left(1 - \frac{NW}{1000}\right) d_{L}$$
(41a)
(41b)

ENote: All quantities in mm.]

Since the bolt strength variation essential for the clamping ratios is conditioned by the relative shift between points P and S from Figure 5 10, the following is produced for this case

 $Y = f / a_D$,

and in connection with the Equations (37) to (40) the elastic resiliencies can now be calculated as (see also Figure 8):

$\delta_1 = a_p a_p \mathcal{Y} = a_p^2 \mathcal{Y}$	(42a)
where $M_1 = F_1 a_{P_2}$	·
$\delta_2 = a_R a_D \gamma$	(42b)
where $M_{2} = f_{2} a_{R}$, and	
$\delta_3 = \langle a_R - a_D \rangle a_D \gamma$	(42c)
where $M_{\infty} = F_{\infty} (a_{R} - a_{D})$.	

(Further tips on calculation in [14]).

3.2. Load and Deformation Conditions in Directly-stacked Parts

In this section the quantities given in Sec. 2 for the dimensioning equations and for the various calculations will be derived from the elastic resiliencies of elements involved in a bolted joint for diverse loading conditions. Also the effect of plastic deformations will be observed in dependence of the resilience of the joint.

The joints discussed consist of plates, sleeves or other parts which in level interfaces (the preload in all the participating bolts in the joint has just been applied) lie directly on one another and have metallic contact.

3.2.1. Conditions in the Assembly Stage

In the case of a bolted joint the clamped parts are pressed together by the clamping parts. Thereby the bolt preload force F_{\odot} is equal to the preload force in the clamped parts but is directed oppositely. In the assembly stage without external loading, the clamping preload force in the bolt is identical with the bolt strength F_{\odot} , and the clamping preload force in the clamped parts is identical with the clamping force F_{\boxtimes} .

In the simple case (without working load), Figure 11, the bolt is merely the clamping part while the plates with their full thickness represent the clamped parts. During tightening, the bolt is lengthened elastically by the proload force F_m by

 $f_{\rm BM} = \delta_{\rm B} f_{\rm st}$ (43) while the clamped parts are pressed together

 $f_{\rm PM} = \delta_{\rm P} F_{\rm PM}$

(44)

Figure 11: Simple bollec joint following assembly; traction force in the bolt $F_{m} (\leftarrow \rightarrow) =$ pressure force in the clamped parts $F_{m} (\leftarrow \rightarrow)$.

In Sec. 2.1. we have already seen in the joint diagram a graphic representation of these conditions for the preload force F_m , in which embedding procedures are not considered (see Figure 1a).

For the general case the sum of the deformations in the bolted joint under preload force F_m becomes:

 $f_{\rm SM} + f_{\rm PM} = \langle \delta_{\rm S} + \delta_{\rm P} \rangle F_{\rm H+} \tag{45}$

In the joint diagram, the increases of the deformation lines are inversely proportional to the resiliencies.

3.2.2. Variation in the Initial Clamping Force Resulting from Remaining Deformation by Embedding

In addition to the elastic deformations, embedding phenomena occur in a bolted joint. These phenomena are primarily caused by the leveling of surface roughness. These post-assembly embedding phenomena which can be designated by the embedding amounts f_z (see also Sec. 4.4.) reduce the elastic deformations so that a new state of equilibrium is
established. Thereby the preload force F_m is reduced by the preload force loss F_z as a result of embedding.

The connection between the preload force loss F_z and the embedding amount f_z is obtained from relations between similar triangles, according to Figure 1b, as

$$\frac{F_Z}{F_m} = \frac{f_Z}{\delta_{\text{eff}} + \delta_{\text{eff}}} = \frac{f_Z}{\delta_{\text{eff}} + \delta_{\text{eff}}}$$
(46)

From this it follows that:

$$F_z = \frac{f_z}{\delta_{\rm B} + \delta_{\rm P}} \tag{47}$$

or--anticipating Equation (53)--:

$$F_z = \frac{f_z}{b_m}$$
(48)

 Φ_{κ} can be taken for the various dimensions of bolted joints from the nomogram in Table 8; δ_{μ} can be taken from the nomogram in Table 9.

If greater plastic deformations of the clamping and clamped parts appear under the working load, then there is also in this case a preload loss which can be determined according to Sec. 3.2.3.1.

3.2.3. Effects Caused by Type of Load Introduction

External forces are generally introduced into the joint through the clamped parts. The resilience conditions change with the situation of the load introduction level in which we can imagine the load introduction.

3.2.3.1. Application of Force on the Bolt Head and Nut Bearing Areas

The introduction of the axial force F_A (axial working load or axial components of a working load in any direction) in levels by means of the bolt head or or nut bearing areas is only theoretically conceivable (see Figure 17a). However, this case is suited for the derivation of basic relationships between forces and deformations.

Under such external loading, the bolt and the clamped parts become longer, as compared with the assembly condition, by the same amount $f_{\odot A}$ = $f_{\odot A}$, Figure 12. The bolt must take up the entire force F_{\odot} , which is $F_{\odot A}$ greater than the preload force F_{\odot} . The clamping force in the clamped parts is simultaneously reduced by the amount $F_{\odot A}$, so that the residual clamping force $F_{KB} = F_{\odot} - F_{\odot A}$ still remains.

The differential forces f_{ex} in the bolt and f_{ex} in the clamped parts which occur in loading of the joint cause the variations in length:

$$f_{BA} = \delta_B F_{BA}$$
 and $f_{FA} = \delta_P F_{FA}$ (49)

Equating them provides the relation:

$$\delta_{\rm m} F_{\rm max} = \delta_{\rm m} F_{\rm max} = 0, \qquad (50)$$

Furthermore the following is valid (see Equation (3)):

$$F_{A} = F_{BA} + F_{PA}$$

From Equations (3) and (50) follow:

$$F_{BA} = \frac{\delta_{B}}{\delta_{B} + \delta_{B}} F_{A} = \Phi_{K} F_{B}$$
(51)

and

(

$$F_{PA} = \frac{\delta_{m}}{\delta_{P} + \delta_{m}} F_{A} = (1 - \Phi_{m}) F_{A}$$
(52)

Thus the force ratio introduced in Sec. 2.1., Equation (2), for the theoretical case of load introduction in the bolt head and not is

.

referred back to the elastic resiliencies with:

$$\delta_{\rm r} = \underline{\delta_{\rm r}} \tag{53}$$

an an a summer experiment of merchanisms in the same set of the same set of the same set of the same set of the

Further, there follows for the case of complete lift-off $F_{PPA} = F_{VP}$ and therefore $(1 - \bar{\sigma}_{K}) F_{PA} = F_{VA}$

Thus the axial force which leads to lift-off amounts to:

$$F_{\text{comp}} = \frac{1}{1 - \Phi_{\text{comp}}} F_{\text{comp}}$$
(54)

If F_m is a concentrically acting compressive force, then it should be put into the equation with a negative sign. F_{mm} and F_{mm} are then negative; that means that the loading of the bolt decreases and that the clamped parts are additionally compressed.

Figure 12 shows the joint diagram for f_{A} as a tension force, Figure 13 the joint diagram for f_{A} as a compressive force. F_{A} is in both cases put between the two deformation lines—proceeding from the deformation lines for the clamped parts.

Figure 13: Joint diagram for the theoretical case of concentric introduction of an axial compressive load in planes through the bolt and nut bearing areas.

The second

Figure 14: Possible cases of alternating stress of a bolted joint.

F_{AL} <0 F_{SAL} <0

< 1

Ĭ.

freeze

Fere Fere

F.

F_{AU} = F_A F_{AUL}=0 F_{AUL}= F_A=F_{AU}

 $\Lambda\Lambda$

FAL =0

FAL + FA + FAO

Figure 15: Joint diagram for the case of stress on the clamping parts by the working load into the plastic area.

.

In the case of bolted joints which are undergoing an alternating working load, Figure 14, the bolt also experiences an alternating stress. From the values for F_{α} as well as the upper limit force $F_{\alpha\alpha}$ and the lower limit force $F_{\alpha\alpha\gamma}$ we obtain the force amplitude in the bolt according to Equation (51) as

. .

 $F_{\pm A} = \Phi_{\rm K} \frac{(F_{A \pm} - F_{A \pm})}{2}$

بر بار ب

and the accompanying mean force as

(55)

(56)

 $F_{BM} = F_{w} + \Phi_{K} \frac{(F_{AB} + F_{AL})}{2}$

Since the continually bearable tension amplitude of the bolt, calculated from F_{BA} and from the core cross section A_B of the thread, is small (see Table 13), we must strive to keep the load portion assigned to the bolt as small as possible. This can be accomplished, among other things, by great elastic resilience δ_B of the bolt and by slight elastic resilience δ_P of the clamped parts (see also Table 15).

The joint diagrams express the same thing. The flatter the deformation line of the bolt and the steeper that of the clamped parts run, the smaller F_{BA} becomes.

If the bolt is plastically deformed by the tension force F_{A} , then its deformation line runs as a curve as per Figure 15 to point K. The deformation in the case of unloading runs along the line KB and cuts off the plastic deformation Δf_{B} on the base line. For the subsequent equal-sized or smaller loadings F_{A} , the joint diagram DBCK is applicable, in which the preload force is reduced by F_{Z} as compared with the assembly state . Analogous conditions exist if the clamped parts are plastically deformed by a pressure force F_{A} , Figure 16. From Figures 15 and 16 we obtain the preload reduction that occurs as a result of plastic deformation, as in Sec. 3.2.2.,

a5

 $F_{z} = \frac{\Delta f_{z}}{\delta_{z} + \delta_{r}} \quad \text{or} \tag{57}$ $F_{z} = \frac{\Delta f_{z}}{\delta_{z} + \delta_{r}} \tag{58}$

(59)

Figure 16: Joint diagram for the case of the stressing of the clamped parts by the working load into the plastic area.

3.2.3.2. Load Introduction within the Clamped Parts

The general case of load introduction through the clamped parts is depicted in Figure 17b. The assumed load introduction levels are thereby 2-2 and 3-3. $F_{\rm A}$ causes an unloading of the parts lying between load introduction levels 2-2 and 3-3 of $F_{\rm PA}$, while, due to $F_{\rm A}$, the remaining parts, which lie in the force flux of the bolt between the two load introduction levels, are additionally loaded by $F_{\rm PA}$. These are the parts of the clamped plates between the levels 1-1 and 2-2, 3-3 and 4-4 as well as the bolt between the levels 1-1 and 4-4.

Eiven the simplified assumption of Sec. 3.1.2.1., the elastic resilience of the parts between the load application levels 2-2 and 3-3 can be assumed as $n\delta_{-}$ as a part of δ_{-} , whereby n < 1. For the parts between levels 1-1 and 2-2, as well as 3-3 and 4-4, the elastic resilience remains.

 $\delta_{\mu} - n \delta_{\mu} = (1 - n) \delta_{\mu}.$

With these elastic resiliencies, f_{eA} causes the following deformation between the load introduction levels 2-2 and 3-3:

 $f_{\text{GAM}} = F_{\text{GA}} \left[\delta_{\text{G}} + (1 - \pi) \delta_{\text{P}} \right]$

and F_{--} causes the deformation:

 $f_{\text{PAR}} = F_{\text{PA}} \, \pi \delta_{\text{PA}} \tag{60}$

As long as no lift-off occurs, both deformations must be equal to one another. This leads to the relation:

 $F_{\text{SP}} \left[\delta_{\text{S}} + (1 - n) \delta_{\text{P}} \right] - F_{\text{PP}} n \delta_{\text{P}} = 0$ (61)
(Equation (61) is analogous to Equation (50) in Sec. 3.2.3.1.)

In addition the following equilibrium condition appears (see Equation (3)):

$$F_{A} = F_{BA} + F_{BA}$$

The desired forces are obtained as:

$$F_{\Xi \Theta} = \frac{n \dot{b}_{\pi}}{\dot{b}_{\Xi} + \dot{b}_{\pi}} F_{\Theta} = n \ \bar{\Phi}_{K} \ F_{\Theta} = \bar{\Phi}_{\Omega} \ F_{\Theta} \qquad (62)$$

$$F_{\pi \Theta} = \frac{\dot{b}_{\pi} + (1 - n) \ \dot{b}_{\pi}}{\dot{b}_{\Xi} + \dot{b}_{\pi}} F_{\Theta} =$$

$$= (1 - n \ \bar{\Phi}_{K}) \ F_{\Theta} = (1 - \bar{\Phi}_{\Omega}) \ F_{\Theta} \qquad (63)$$
In Equations (62) and (63)

$$\bar{\Phi}_{n} = \pi \ \bar{\Phi}_{k} = \pi \ \frac{\delta_{r}}{\delta_{s} + \delta_{r}} \tag{64}$$

In place of the bolt resilience δ_{\pm} in Sec. 3.2.3.1. the resilience $\delta_{\pm} + (1 - \pi) \delta_{\pm}$ has appeared. This is the elastic resilience of all the parts between intended load introduction levels 2-2 and 3-3 on the bolt side, which are to be considered as clamping. In place of δ_{\pm} , $n\delta_{\pm}$ appears. This is the elastic resilience of portions of the clamped parts lying between the intended load application levels 2-2 and 3-3. Figure 17 also contains, along with the general form of the load introduction within the clamped parts, Figure 17b, the two theoretically conceivable bounding cases, Figures 17a and 17c.

Depending on the situation of the load introduction levels, the

1

differential force F_{max} can lie between 0 and Φ_{mx} F_{max} in the case of a bolted joint according to Figure 17 with loading by F_{max} .

.

Figure 17: Load introduction in the bolted joint.

Figure 18: Joint diagram for a working load introduced inside of the clamped parts.

In Figure 18 the force and deformation conditions in the joint diagram are depicted for the case of load introduction within the clamped parts. The case for the assembly stage is shown by dotted lines.

3.2.4. Eccentric Clamping and Loading

The case of a concentrically clamped and concentrically loaded bolted joint treated in Sec. 3.2.3. is realized in design only very rarely. In most cases, the line of contact of the axial force F_{A} will not lie in the bolt axis, and the bolt axis itself will not fall together with the axis of gyration of the clamped parts (to be exact, of the bending body, Figure 6). Due to eccentricities, a resulting bending moment is produced in the bolted joint. Along with the tensions produced by the forces F_{∇} and F_{max} , bending tensions become effective in the bolt cross section which must be considered when testing for endurance strength. Over and above this, eccentrically loaded bolted joints tend toward one-sided lift-off at the interface if the axial force f_A exceeds a value dependent upon the preload f_{a} and the eccentricities of both forces. One-sided lift-off causes a sharp increase in bolt tensions from axial force and bending. The requirement to avoid one-sided lift-off and its detrimental consequences for the security of the joint determines decidedly the quantity of the preload f_{\sim} to be applied and therefore also influences the dimensions of the bolt, for which endurance strength is to be demonstrated with alternating working loads.

In the case of eccentrically clamped and eccentrically loaded bolted joints, elastomechanical problems involving a considerable amount of calculation, due to the design multiplicity, for a mathematical treatment.

The following derivation of the calculation equations is based on the elastic resiliencies which were given in Sec. 3.1.2.3. and is subject to the simplified assumptions made there. The user of these equations must check the dependability of the simplifications in each

Page 44

case and, if necessary, must make additional calculations (in this regard, cf. [4]). The consideration of eccentric load applications will lead to a greater accuracy of goal with the measurement of bolts than the use of simple equations for concentric clamping and concentric loading.

3.2.4.1. Forces and Deformations up to the Lift-Off Limit

An eccentrically clamped and also eccentrically loaded bolted joint is depicted in Figure 19. During assembly, the bolt was tightened to the preload force f_{v} . For this joint the conditions and assumptions of Sec. 3.1.2.3. will suffice, i.e., it can be defined as a bending body with the axis of gyration 0-0. The bolt axis S-S lies eccentrically to the axis of gyration 0-0 by the amount x = s. The line of force A-A of the axial force f_{a} which is being externally applied has the distance x= a from the axis of gyration 0-0.

As given in Figure 19, the axis of gyration 0-0 fixes the zero point of the x-axis. Moreover, the value x = a should always be positive, as for Equation (36). The value x = s is then likewise positive if the bolt axis S-S and the load line of application A-A lie on the same side eccentrically to the axis of gyration 0-0. If they are located on opposite sides of the axis of gyration, then x = s is negative. It is further stipulated that in practice a > s always.

200

Page 45

Figure 19: Eccentric clamping and eccentric loading of a bolted joint ("bending body" according to Figure 6).

If the bolted joint, which has been preloaded with F_{ν} by eccentrically arranged bolts depicted in Figure 19, is additionally loaded with the eccentrically functioning force $F_{\alpha,}$ then the bolt load increases by $F_{\alpha\alpha}$.

Since the elongation of the bolt f_{mn} is equal to the elongation of the clamped parts f_{mn} , then:

- $f_{BA} = f_{PA}$
- $\delta_{\Xi} F_{\Xi \Theta} = \delta_{F} F_{\Xi \Theta}$
- $\delta_{\rm S} F_{\rm SA} = \delta_{\rm P} \ (F_{\rm A} F_{\rm SA})$
- $\delta_{\Xi} F_{\Xi A} = \delta_{P} F_{A} \delta_{P} F_{\Xi A}$

This equation is valid primarily in general cases. For the case of eccentrically loaded and eccentrically clamped bolted joints this equation goes over into:

 $\delta_{B} - F_{BA} = \delta_{P}^{++} - F_{A} - \delta_{P}^{+} - F_{BA}$ (65) because δ_{P}^{++} can be set for the resilience in the eccentric force line of application A-A, and δ_{P}^{++} for the resilience in the eccentric bolt axis S-S.

In the case of load introduction in bolt heads and nuts, we obtan, solved according to $f_{\rm sol}$

 $(\delta_{B} + \delta_{P}^{+}) F_{BA} = \delta_{P}^{++} - F_{A}$

and from that:

$$F_{BA} = F_{A} \frac{\delta_{\mu}}{\delta_{B}} + \delta_{\mu}} = F_{A} - \bar{\Phi}_{\mu K}$$
(66)

By substituting δ_{μ}^{**} and δ_{μ}^{***} according to Equations (34) and (36), we get the force ratio $\overline{\Phi}_{a+c}$ for the eccentrically clamped and eccentrically loaded joint with the load introduction in the levels of the bolt head and nut:

$$\hat{\Phi}_{\alpha \kappa} = \frac{\delta_{\mu} \bullet \bullet}{\delta_{\alpha} + \delta_{\mu} \bullet} = \frac{\delta_{\mu} (1 + a/s \lambda^{2})}{\delta_{\alpha} + \delta_{\mu} (1 + \lambda^{2})}, \qquad (67)$$

In the case of an introduction of the forces f_{α} , f_{α} and f_{α} within the clamped parts at the height of levels 2-2 and 3-3 at a distance nI_{κ} , according to Figure 17b, Equation (65) should be written as follows, as in Sec. 3.2.3.2.:

 $[\delta_{\Xi} + (1 - n) \delta_{\mu}^{+}] F_{\Xi A} = n \delta_{\mu}^{++} F_{A} - n \delta_{\mu}^{+} F_{\Xi A}.$ (68a) From this follows that

 $[\delta_{e} + \delta_{p} +] F_{en} = n \delta_{p} + F_{en}$

where

$$\Phi_{mn} = F_{BA} / F_{A}$$

$$\Phi_{mn} = \pi \frac{\delta_{\mu}^{mm}}{\delta_{B} + \delta_{\mu}^{m}} = \pi \frac{\delta_{\mu} (1 + a/s \lambda^{2})}{\delta_{B} + \delta_{\mu} (1 + \lambda^{2})} = \pi \Phi_{mK}$$
(68b)

Equation (68b) can thus be also purely formally derived from Equation (67) by replacing δ_{-}^{++} by $n\delta_{+}^{++}$.

According to Equation (3) there follows, using Equation (63):

$$F_{PA} = F_A - F_{SA} = (1 - \bar{\mathbf{u}}_{mn}) F_{A} \tag{69}$$

In the case of the force ratio $\bar{\Phi}_{en}$ according to Equation (68), the longitudinal forces of an eccentrically clamped and eccentrically loaded

bolted joint, under observation of the sign rule for *s* according to Sec. 3.1.2.3., can be calculated analogously to those of a concentrically clamped and loaded one, as long as=one-sided lift-off in the interface is prevented by a sufficiently great preload.

Page 48

3.2.4.2. Forces and Deformations at the Lift-off Limit

If the axial force F_A in an eccentrically loaded bolted joint surpasses a limit value $F_{A=0}$ dependent upon a preload, then the clamped parts unilaterally lift off in the interface beginning at the position x= a, Figure 19. The cne-sided lift-off begins when the resulting pressure tension in the interface becomes zero at the position x = a.

In the case of the bending body observed here, Figure 19, the tension distribution in the interface is approximately:

$$\sigma(x) = -\frac{F}{A_{\rm B}} + \frac{M_{\rm B}}{I_{\rm B}} x$$
(70)

where:

$$F = F_{\rm o} - (1 - \bar{a}_{\rm en}) - F_{\rm A}$$
 (71)

and

$$H_{\rm B} = F_{\rm A} \left(a - \bar{a}_{\rm mn} s \right) - F_{\rm U} - s_{\rm s} \tag{72}$$

Therefore

$$\delta(x) = -\frac{F_{\omega} - (1 - \Phi_{ee})F_{\omega}}{A_{D}} + \frac{F_{\omega}(a - \Phi_{ee}) - F_{\omega}s}{I_{D}}$$

$$(73)$$

or

· · · · · · ·

Lift-off begins in the edge fiber x = u if the tension there becomes $\sigma(u) = 0$. If F_{α} is a tension force and a > s, then the

1

lift-off begins in the edge fiber next to the force line of application A-A (Point U in Figure 19). In this case the edge fiber distance α can be put in as a positive value for x. If a < s, then the lift-off begins in Point V. The edge fiber distance ν can be then put in as a negative value. In the case of a pressure force F_{α} which acts at a sufficiently great distance a and which can be put in as negative, the lift-off begins likewise on the opposite side of the cross section (Point V in Figure 17). This is taken into account if the edge fiber distance to Point V is put in as a negative value ν in the place of α in the otherwise unaltered equations.

Page 49

By substitution of x = a in Equation (70), the condition $\delta(a) = 0$ leads to the lift-off-causing axial force $f_{A=b}$ as a function of the applied preload F_{v} :

$$F_{\text{ABD}} \stackrel{=}{=} \frac{F_{\text{O}}}{\begin{pmatrix} 1 + au \\ k_{\text{D}}^2 \end{pmatrix} \stackrel{=}{\leftarrow} \begin{pmatrix} 1 + su \\ k_{\text{D}}^2 \end{pmatrix} \stackrel{=}{\leftarrow} \Phi_{\text{AD}}}$$
(75)

For a given axial force F_{a} , we get conversely that very preload F_{vab} , at which one-sided lift-off occurs:

$$F_{V=D} = \frac{(a-s) u}{k_{D}^{2} + s u} F_{A} + (1 - \bar{a}_{mn}) F_{A}$$
(76)

Thus the clamping force present at the lift-off limit is:

$$F_{\rm Kab} = \frac{(a-s)}{k_{\rm B}^2 + s} \frac{4}{u} F_{\rm A} \tag{77}$$

If it is to be confirmed that no one-sided lift-off occurs under the eccentrically acting axial force F_{Θ_2} , then a required clamping force $F_{K=0}$, must be inserted into the dimensioning equations (8) or (9) which is at least equal to the clamping force $F_{K=0}$ present at the lift-off limit, i.e.,

$$F_{Kmr+} = \frac{(a - s) \ u \ F_{A}}{k_{B}^{2} + s \ u}$$
(7B)

.

The dimensioning equations (8) and (9) for the determination of the bolt sizes are applicable to the eccentrically loaded bolted joint under the restrictions given in Sec. 3.2.4. if the force ratio \mathfrak{G}_{an} according to Equation (68) as well as a required clamping force according to Equation (78) are substituted. If this value of the clamping force F_{Karr+} is not sufficient to take over the required friction contact or the required sealing functions, then we must reckon on the highest value F_{Karr+} required in Equation (8) or (9).

Special Cases

a) Bolt strength and external force work eccentrically on the clamped parts. The clamped parts are prismatic; however, they are so thin that the interface area A_{24} becomes more or less equal to Aers F_{14} , however

b) The bolt is concentrically arranged (s = 0); the external force works eccentrically ($a \neq 0$). For the rest, the general case with the conditions described in Secs. 3.1.2.2. and 3.2.4.1. is valid. The force ratio according to Equation (68) is reduced as a result of s = 0 to:

$$\bar{\Phi}_{mn} = \pi \frac{\delta_m}{\delta_m + \delta_m} = \bar{\Phi}_n$$

and this does not differ from the case of the concentric joint; but the eccentrically loaded to t experiences an additional bending stress. For the prevention of one-sided lift-off, a minimum clamping force F_{Kerr} is needed which can be calculated as follows:

$$F_{K=r+} = \frac{a \ u \ F_{A}}{k_{B}^{2}} \tag{80}$$

Page S1

Figure 20: Special case of a "bending body."

c) In the case of a pure moment loading, the force variable \bar{w}_m and the minimum clamping force can be derived for a bolted joint under the conditions defined in Secs. 3.1.2.2. and 3.2.4.1. From Equations (66) and (67) this becomes:

$$F_{\rm BA} = \frac{\delta_{\rm P} \, \lambda^2}{\delta_{\rm B} + \delta_{\rm P} \, (1 + \lambda^2)} - \frac{M_{\rm B}}{s} \tag{81}$$

or for the purpose of definition of a dimensionless force ratio:

$$\Phi_{m} = \frac{\delta_{p} \lambda^{2}}{[\delta_{m} + \delta_{p} (1 + \lambda^{2})] s/k_{p}}$$
(82)

and therefore:

$$F_{\text{RR}} = \Phi_{\text{m}} \frac{M_{\text{R}}}{K_{\text{R}}} \tag{83}$$

The minimum clamping force for the prevention of one-sided lift-off is produced in the same way from Equation (78) as:

$$F_{\text{K,mbs}} = \frac{u}{k_{\text{K}}^2 + s \, u} \tag{84}$$

Here we must note that for the case of a pure moment loading where $a \ F_{\alpha} \rightarrow M_{\pi}$ and $1/a \rightarrow 0$, $F_{\alpha} \rightarrow 0$.

 \sim

Therefore we obtain from Equation (3) the equation:

$$F_{re} = -F_{se} = -\frac{\Phi_{re}}{K_{se}}$$
(85)

in place of the otherwise generally valid Equation (4) and thus:

$$F_{Vab} = F_{Kab} + F_{FA} = \frac{u}{k_{B}^{2} + s \cdot u} \frac{H_{B}}{k_{B}} \qquad (86)$$

with ϕ_m in accordance with Equation (82). In the case of given F_{∇} , we can calculate from this $M_{D=D}$ as the limit value of the external moment which leads directly to one-sided lift-off.

For the special case s = 0 we obtain with $\lambda^{2} = 0$ according to Equation (33) and with $\delta_{m} = 0$ according to Equation (82):

$$F_{BA} = -F_{PA} = 0$$

according to Equations (83) and (85) and therefore also $F_{\nabla} = F_{K_{\pi}}$

For a rectangular cross section where $k_{\rm B}^2 \simeq \alpha/3$ we obtain:

$$M_{\rm Perty} = u/3 F_{\rm V}, \qquad (87)$$

i.e., lift-off occurs as soon as the clamping force F_{∞} in the interface, shifted to the left by the external moment M_{D} in the sense of Figure 19, emerges from the core area of the interface cross section.

3.2.4.3. Moments, Angle Deformations and Bolt Stress

The bending moment acting additionally on the clamped parts due to eccentric loading amounts to:

$$H_{\rm D} = F_{\rm A} \cdot \mathbf{z} - F_{\rm BA} \cdot \mathbf{s} = (1 - \underline{s} \cdot \overline{\mathbf{0}}_{\rm an}) \cdot \mathbf{z} \cdot F_{\rm A} \tag{88}$$

Analogous to the longitudinal resilience δ for the calculation of -longitudinal-deformation f, a bending resilience β can be defined for the calculation of the bending deformation γ . It can be determined like the longitudinal resilience (see Equation (31)) for the case of the simply observed bending body (as long as no lift-off occurs) as:

$$B_{\mu} = \frac{I_{\kappa}}{I_{p} E_{\mu}} = \frac{I_{\kappa}}{k_{p}^{2} R_{p} E_{\mu}}$$
(89)

Analogous to the longitudinal resilience (see Equation (26)), but with the simplification that the bolt is not treated in a strict fashion as a bent tension member, the following is produced for the bolt as the sum of the partial resiliences $\beta_1 = I_1 / I_1 \in \mathbb{R}$:

$$\beta_{\mathbf{G}} = \beta_{\mathbf{K}} + \beta_{\mathbf{1}} + \beta_{\mathbf{2}} + \dots + \beta_{\mathbf{G}} \tag{90}$$

The sum can also be written in the form

$$\beta_{\Xi} = \frac{I_{\pm \pm \pm}}{I_{\Xi} E_{\Xi}} \tag{91}$$

From this follows that

$$I_{\bullet\bullet\bullet\bullet} = \beta_{\Xi} I_{\Xi} E_{\Xi}.$$
 (92)

The angle of inclination of the clamped prisms under the portion H_{r-b} of the bending moment H_{b} taken up by the prisms is obtained from

$$7_{\rm P} = \beta_{\rm s} \, M_{\rm PD} \tag{93}$$

and the angle deformation of the bolt under the portion $\#_{sb}$ of the bending moment taken up by the bolt as

$$\mathbf{j}_{\mathfrak{S}} = \boldsymbol{\beta}_{\mathfrak{S}} \, \boldsymbol{M}_{\mathfrak{Sb}}. \tag{94}$$

Since $\mathcal{I}_{e} = \mathcal{I}_{e}$ and $\mathcal{M}_{b} = \mathcal{M}_{eb} + \mathcal{M}_{eb}$ must be the case, then $\mathcal{M}_{eb} = \mathcal{B}_{e} \mathcal{M}_{eb}$ (95)

$$M_{\rm SD} = M_{\rm D} - M_{\rm PD} = M_{\rm D} - \frac{B_{\rm D}}{B_{\rm P}} M_{\rm SD} \tag{96}$$

$$or \quad M_{\rm Sb} = \frac{M_{\rm b}}{1 + \beta_{\rm S}/\beta_{\rm P}} \tag{97}$$

Since in general $\mathcal{B}_{e} >> \mathcal{B}_{e}$, $\mathcal{B}_{e}/\mathcal{B}_{e}$ is much greater than 1, so that the moment which is to be taken up by the bolt can be written approximately as:

With Equation (88) this becomes:

$$\begin{array}{c} \mathcal{H}_{GD} \approx \underline{B_{m}} \left(1 - \underline{s} \, \breve{\Phi}_{mn}\right) \, \vec{a} \, F_{A} \tag{98} \\ \overline{B_{B}} \qquad \vec{a} \end{array}$$

For the endurance strength of the bolt in an eccentrically loaded joint, the nominal tension σ_{Bab} to be calculated from the longitudinal force F_{BA} and the moment N_{Bb} for the highest stessed mantle fiber of the core cross section at the first load-bearing thread proves to be the determining factor. It is calculated from:

$$\sigma_{\text{SAD}} = \sigma_{\text{SA}} + \sigma_{\text{D}} = \frac{F_{\text{EA}}}{A_{\text{S}}} + \frac{M_{\text{SD}}}{M_{\text{S}}} =$$

$$= \bar{\Phi}_{\text{en}} \frac{F_{\text{A}}}{A_{\text{S}}} + \frac{B_{\text{E}}}{B_{\text{E}}} = 1 - \frac{S}{a} \bar{\Phi}_{\text{en}} - \frac{a}{A_{\text{S}}} \frac{F_{\text{A}}}{M_{\text{S}}}$$
(99)

and can be changed with the formulas of the circular cross section $A_{\Xi} = \pi d_{\Xi}^2/4$ and I_{Ξ} / $M_{\Xi} = d_{\Xi}/2$ into the relation:

$$\sigma_{\text{BAB}} = \left[1 + \left(\frac{1}{\Phi_{\text{en}}} - \frac{s}{s}\right) \frac{I_{\text{K}}}{I_{\text{en}}} - \frac{E_{\text{B}}}{E_{\text{P}}} \frac{a \pi d_{x}^{3}}{8 A_{\text{B}} k_{\text{B}}^{2}}\right] \frac{\Phi_{\text{en}} F_{\text{A}}}{A_{3}}$$
(100)

Here the expression to the right next to the brackets is the tension alone from the differential force $F_{\sigma\sigma}$, and the bracketed expression is its increase due to the additional bending tension. <u>3.2.4.4.</u> Presentation of the Forces, Deformations and Tensions in Joint <u>Diagrams</u>

Even for the general case of eccentrically clamped and eccentrically loaded bolted joints we can depict a joint diagram. Figure 21 shows the joint diagram for the case of loading by an axial force F_{α} at the lift-off limit (F_{α} is thus slightly less than $F_{\alpha,m_{D}}$). Under the preload F_{ν} , which in this case is equal to the preload $F_{\nu,m_{P}}$ required for the prevention of lift-off, the bolt is elongated by the amount of SD = δ_{α} F_{ν} , while the prisms are compacted at the position x =s, where the bolt head and nut of the bolt make contact by the amount of OP = $\delta_{\mu}^{-\mu} F_{\nu}$ ($\delta_{\mu}^{-\mu}$ according to Equation (34)).

Figure 21: Joint diagram for eccentric clamping and eccentric loading.

With that we can draw the force deformation diagram SOPV for the condition of preload.

Furthermore, the joint diagram for the loaded condition should be formed in such a way that we can determine the load portions F_{SA} and F_{FA} between two deformation lines with the insertion of F_{A} .

For this purpose, one of the deformation lines should be the characteristic of the clamping parts. This characteristic is not identical with the bolt characteristic in the case of load introduction over the clamped parts. It is determined in this case similarly to Figure 18 by the Points S⁷ and V.

The deformation line valid for the bolt strength ($F_{\nu} + F_{ee}$) through the Points S', V and L must designate a angle of inclination whose cotangent is equal to the resilience between the points of force application in the bolt axis during loading in the bolt axis. In the case of load application in the levels beneath the bolt head and nut this would be δ_{e} ; however, in the case of load application within the clamped parts at a distance of $p \ I_{K}$ according to Figure 17b, this

resilience changes according to Equation (68a) into $(\delta_{\alpha} + (1 - n) \delta_{\mu}^{-})$. Therefore

 $\overline{S'0} = [\delta_{\pm} + (1 - n) \delta_{\mu}] F_{\nu}$

with δ_{r} in accordance with Equation (34).

The reciprocal negative inclination scale of the deformation lines falling to the right through Point V which are valid for the additional plate force between the force application levels 2-2 and 3-3, as per Figure 17b, is designated, as in Figure 7c, as $n \delta_{-}$. It is not necessarily assignable, since the line of application of the additional plate force F_{-n} is not known at first. Its distance q from the middle line 0-0 of the prismatic joint which is to be used in the place of a_{r} results, however, from the following equilibrium conditions:

 $F_{A} = F_{BA} + F_{PA},$

Therefore

 $F_A a = \bar{\Phi}_{nn} F_A s + (1 - \bar{\Phi}_{nn}) F_A q$

and

$$\frac{q}{s} = \frac{a/s - \Phi_{an}}{1 - \Phi_{an}}$$

where

$$\Phi_{mn} = \pi \frac{\delta_{m}}{\delta_m} + \delta_m + \delta$$

according to Equation (68b).

With the substitution of a by q in Equation (36) and accordingly the substitution of $\delta_{\mu}^{\mu\nu\nu}$ by $\delta_{\mu}^{\mu\nu\nu\nu}$ we obtain:

$$n\delta_{\mu} = n\delta_{\mu} \left(1 + \frac{q}{s}\lambda^{2}\right) =$$

$$= n\delta_{\mu} \left(1 + \lambda^{2} \frac{a/s - \Phi_{\mu}}{1 - \Phi_{\mu}}\right)$$

and after short intermediate calculation where:

1. 1

$$\delta_{\mathbf{r}} \left(1 + \frac{a}{s} \lambda^2 \right) = \delta_{\mathbf{r}}^{\mathbf{r}}$$

according to Equation (36) and δ_{μ} (1 + χ^{2}) = δ_{μ}^{+} according to Equation (34),

 $n\delta_{\mathbf{P}}^{****} = \begin{bmatrix} \delta_{\mathbf{e}} + \delta_{\mathbf{P}}^{*} - n\delta_{\mathbf{P}}^{*} \end{bmatrix} \xrightarrow{\underline{\mathbf{d}}_{\mathbf{e}}}_{\underline{\mathbf{d}}_{\mathbf{e}}}$

The deformation line thus falls from V towards P", whereby:

$$OP'' = n \delta_{P} + F_{\vee} = [\delta_{B} + (1 - n) \delta_{P} +] = \frac{\Phi_{P}}{1 - \Phi_{P}} F_{\vee}$$

as has to be the case on the basis of the similarity relation

 $H''K:KL=S''D:DP'' = (1 - \Phi_{mn}) : \Phi_{mn}$

If the joint is preloaded at $F_{\nabla} = F_{\nabla mr^*}$ to prevent lift-off of the joint under the working load F_{Δ} , then the joint would lift off at Point H" if $F_{\Delta mp}$ were to be exceeded.

After lift-off, stress bearing appears in the borderline case. For reasons of equilibrium (see Figure 19)

 $F_{\alpha} (a + /v/) = F_{\alpha} (s + /v/).$ (101)

The relation is satisfied by all points of the lines S'JJ" if:

$$\overline{VJ}$$
 / \overline{VO} = $s + /v/$

In the case of loading surpassing the lift-off point, the characteristic VH" will continue more of less like the broken line and will tend toward the line S'JJ". The exact course is of little interest since the lift-off limit given by Point H should not be exceeded.

3.3. Force and Deformation Conditions in the Case of Non-directly Clamped Plates

As in the previous section, the quantities given in Sec. 2. will refer to the elastic resiliencies. The joints treated in this section

will consist of flanges and flange-like plates which are not in direct contact even after application of the preload.

3.3.1. Load Ratio for Flanges and Flange-like Joints

In the symmetrical bolted joint in Figure 22, the parts PP, which are clamped with the preload f_{∇} by means of a plate with the bolts S, are clamped to a base object said to be inflexible. The bolts are elongated at f_{Θ} ; the flanges are bent at 2 f_{1} .

We are investigating force variations $F_{\sigma\sigma}$ in both bolts S, and $F_{\sigma\sigma}$ in the clamped parts PP if the joint is loaded by the external force F_{σ} .

 f_{eA} and f_{eA} cause the following deformations shown in Figure 22 (*o*-values see Sec. 3.1.3.).

---Length alteration per bolt by loading

with f_{BA} $f_{BA} = \delta_B F_{BA}$ ----Deformation of the plate (Shifting of the Point S with respect to Point P) by the force pair $f_{BA} = \delta_2 F_{BA}$ by the force pair $F_{BA} = \delta_2 F_{BA}$

---Deformation of clamped parts

• •

by loading with $F_{PA} = f_{PA} = \delta_{P} F_{PA}$

As long as the parts do not lift off from one another, the following is true according to Figure 22:

$$f_2 + f_3 + f_{30} = f_{F0}$$
 (102)

or according to a transformation:

$$F_{\text{SA}} \left(\delta_{\text{S}} + \delta_{\text{Z}} \right) = F_{\text{FA}} \left(\delta_{\text{F}} - \delta_{\text{Z}} \right). \tag{103}$$

From the Equations (2) and (103) there follows for the force ratio:

$$\dot{\Phi}_{F1} = \frac{F_{BA}}{F_{A}} = \frac{F_{BA}}{F_{BA} + F_{FA}} = \frac{1}{1 + \frac{F_{FA}}{F_{FA}}} = \frac{1}{1 + \frac{\phi_B}{\phi_B} + \phi_Z}$$
(104)

and similar to Equation (4):

$$F_{ro} = (1 - \Phi_{r1}) F_{o}. \tag{105}$$

As per the quantity of the δ -values, $F_{\sigma\sigma}$ can be positive as well as negative. The bolt load no longer increases with negative $F_{\sigma\sigma}$ in spite of tension force on the joint, but even decreases. In the case of the symmetrical flange joint with m bolts according to Figure 23, we should observe that two flanges take part in the deformation. However, in the case of two equal flanges:

$$\vec{\Phi}_{F1} = \frac{F_{BB}}{F_{B}} = \frac{1}{1 \, \delta_{B} + 2 \, \delta_{2}} = \frac{\delta_{F} - 2 \, \delta_{3}}{\frac{\delta_{E} + \delta_{F} + 2 \, \delta_{2} - 2 \, \delta_{3}}} (106)$$

$$\frac{1 + m}{\delta_{F} - 2 \, \delta_{3}}$$

 $(\delta_{\Xi} \text{ or } \delta_{\Xi} \text{ is the appropriate deformation on the flange) and, as above:$ $<math>F_{FA} = (1 - \Phi_{F1}) F_{A}$

After the insertion of δ_2 and δ_3 from the Equations (42b) and (42c) into Equation (106) we get an expression corresponding to Equation (31) in DIN 2505.

Figure 23: Flange joint with m bolts.

3.3.2. Joint Diagrams for Flange Joints

3.3.2.1. Joint Diagram with Linear Deformation Lines

Each bolt in Figure 23 is preloaded with $1/\pi F_{\nu}$ and thereby elongates at $1/\pi \delta_{0} F_{\nu}$. Both flanges bend under f_{ν} at $2 \delta_{1} F_{\nu}$ while the clamped parts are compressed at $\delta_{\tau} F_{\nu}$. This is depicted by the triangle SPV in the joint diagram, Figure 24. The diagram will be set up from now on in such a way that the deformation line VP also serves as one of the two characteristic lines in the case of additional loading by F_{ν} . A second characteristic line—in the case of linear characteristics the line VM—must still be determined. V is the point of these lines for which $F_{\Phi} = F_{\nu}$ and $F_{\Phi\Phi} = 0$.

For the determination of the point M (in the case with unpressured seal) the following is valid according to Figure 24:

 $\overline{PN} \sim F_{FO} = F_{V}, \qquad (107)$

If we substitute Equation (107) into Equation (105), then we get: $\overrightarrow{PM} \sim F_{e} = F_{e}$ (108)

From Equation (104) there follows then:

$$\overline{NM} \sim F_{BA} = \overline{\Phi}_{F1} F_A = F_{\nabla} - \overline{\Phi}_{F1}$$
(107)
$$1 = \overline{\Phi}_{F1}$$

With \overline{PM} from Equation (108) or \overline{NM} from Equation (109), Point M can be drawn into the diagram.

 F_{BA} and F_{PA} for any F_{A} are found by inserting $F_{A} \sim HK$. F_{A} is separated into both partial forces F_{BA} and F_{PA} by the line \overline{VN} (// OP).

Figure 25 shows the force deformation diagram for negative F_{SA} or for the falling characteristic line \overline{VM} .

Figure 24: Joint diagram for a flange joint according to Figure 23 (F_{BA} as a positive or rising sealing characteristic).

Figure 25: Joint diagram for a flange joint according to Figure 23 (f_{BA} as a negative or falling sealing characteristic).

3.3.2.2. Joint Diagram with Non-linear Deformation Characteristic

In the case of clamped parts with a non-linear characteristic, e.g., in the case of seals, the experimentally determined unloading characteristic line of the seal appears in the place of the deformation line VHP.

Figure 26: Joint diagram for a flange joint according to Figure 23 with clamped sealing and a non-linear characteristic.

When determining the appropriate curved line VKM in Figure 26, we must return to Equation (102). After initiation of deformations due to $F_{\rm EM}$ this reads for two flanges:

$$F_{\rm ER}\left(\frac{1}{2}\delta_{\rm E}+2\delta_{\rm E}\right) = f_{\rm F}-2\delta_{\rm E}F_{\rm FR} \tag{110}$$

From this follows:

$$F_{SP} = \frac{f_{P} - 2 \, \delta_{Z} \, F_{PQ}}{2 \, \delta_{Z} + \frac{1}{2} \, \delta_{S}} \tag{111}$$

The two characteristic lines are determined point by point. For an accepted f_{r} , f_{ra} is taken from the seal characteristic line (example: \overline{JH}) and with it F_{ra} is calculated according to Equation (111) and plotted in the diagram (Point K).

4. Influencing Factors

Besides the function quantities (treated in Sec. 3), which essentially depend upon the design configuration of the building part and the bolted joint, there is an entire series of effects to be considered which are dependent either upon material and the surface design of the clamping parts and of the clamped areas, upon the shape designs of the selected bolts and nuts, or on the assembly conditions.

The multiplicity of these effects will be treated in this section.

4.1. Strength Classes

Strength and elastic limit greatly influence the bolt dimensions. The strength classes have been standardized in DIN 267, p. [Blatt] 3, pub. 1967, and correspond to DIN/ISO 898. Decisive for the dimensioning is the elastic limit; it should not be exceeded by the nominal tension when tightening the bolt and under loading of the bolted joint in general. Only under special prerequisites, e.g., during angle controlled tightening (see Sec. 4.6.2.2.), may the elastic limit be

exceeded. The rupturing elongation, the tenacity of the bolt head, the notch-impact toughness, and, to a lesser extent, the ratio of the elastic limit for the tensile strength are criteria for the toughness of the bolt material. Therefore, toughness in the case of bolts plays a significant role because the threads are notches and local deformations must be taken up for the prevention of breakage due to brittleness in these notches, despite anti-yielding measures, in order to be able to utilize the bolt fully.

High-duty bolts (beginning with quality class 8.8) can be manufactured to be lighter and generally less expensive, even if the external material dimensions cannot be reduced.

4.2. Minimum Engagement Depth; Strength of Bolt-Nut Combination

A bolted joint should be so arranged that the threads can take up the full strength of the bolt without destroying the interacting threading. In the case of overloading, the breakage should occur in the free threading or in the shaft. The appropriate strength arrangement of the bolt and nut is given, according to DIN 267, pp. [Blatt] 3 and 4 (in accordance with DIN/ISO 898), when the code for the strength class of the nut corresponds to the first code in the strength class of the bolt (example: Nut 10 for Bolt 10.9).

For blind hole bolts Table 16 gives the minimum engagement depth for several mechanical materials. Fine threads require greater engagement depths or greater strengths of the nut threading. They are more sensitive to damage and contamination. In the case of frequent tightening they are more inclined to binding; however, they have advantages with respect to security and can support somewhat greater loads, with the choice of the correct engagement depth, than the bolts with standard threads.

4.3. Bearing Stress on Bolt Head and Nut Surfaces

In the bearing surfaces between the bolt head or nut on one side and the clamped parts on the other, no bearing stresses which cause creepage processes due to either preload or to maximum force should be allowed. The bearing stress calculated from the maximum force should therefore not exceed the compressive yield point of the clamped material.

If the bearing head of the bolt or the nut is smaller than that of the clamped material, then greater bearing stress can conditionally be allowed. Experimentally determined bearing stress limits are given for several mechanical materials in Table 14. In the case that washers are used for the reduction of the bearing stress, sufficient strength and thickness must be considered.

4.4. Embedding

The assembly embedding amounts f_{\pm} occuring after assembly (see Sec. 3.2.2.), which cause the reduction of preload force, are smaller than the surface roughness of the clamped interfaces leads us to expect, since during the tightening process an extensive leveling is already taking place and even in the case of alternating working loads, the contact alterations in the interfaces remain relatively small. From this we can explain the results of measurements which show that the surface roughness of the interfaces in the case of the application of usual preparation methods has little effect on the degree of the embedding amount following assembly. On the contrary, the embedding amount decreases per interface with an increasing number of interfaces and increases with growing resilience of the clamped parts. Both phenomena are explained by the fact that embedding is a process comparable to relaxation: with a smaller number of interfaces the

pressure decreases more quickly in the interfaces, and in the case of greater resilience more slowly.

If no embedding amounts are present which are determined in the prototype, the values given in Table 7 can be used as optimum values.

These have been determined in massive joints with varying degrees of hardness of the clamped parts and differentiating degrees of surface roughness of the interface in which there was full area contact in the interfaces under applied preload. These optimum values are valid for the case that the values given in Table 14 for the contact pressure limit are not exceeded. Otherwise creepage of the clamped material in the bolt head and/or nut bearing surface appears and the embedding amounts can become uncontrollably larger.

According to Sec. 3.1.2.1., as opposed to clamped plate stacks, the resilience can be essentially greater than in the case of massive joints of equal clamping lengths so that experimental detemination of the embedding amounts is recommended in such cases.

4.5. Fatique Strength

The fatigue strength of a bolted joint is dependent upon the following two main effects:

a) the dimension of the alternating axial force amount acting on the bolt which is dependent upon the design configuration of the joint. Design measures, which reduce this amount and thereby raise the endurance strength of the joint, are listed in Table <u>15 under 1.</u>

b) the fatigue strength of the bolts in connection with the mated nut threads. Measures for the improvement of the endurance strength are contained in Table 15 under 2 to 5. For standardized bolts, like, for example, bolts according to DIN 931, DIN 933, DIN 912, the threading

determines the fatigue strength. For such bolts, the values given in Table 13 can be inserted.

4.6. Tightening the Bolted Joints

The tightening procedure influences the required dimension of the bolt because, in addition to the axial force, torque must by taken up by the bolt. However, the effect which comes from the variability of the preload force in various tightening procedures is especially strong.

If, for example, the bolt dimension M10 is sufficient for a bolted joint with a determined loading, in the case that the bolt is tightened according to the procedure directed by the angle of rotation, then the dimension M18 would have to be selected in keeping with the same strength class of the bolt if the bolt is to be tightened automatically with a power wrench. The tightening procedure should therefore be carefully selected. Here the number of assembly pieces should be especially considered. We must take care that the tightening procedure established by calculation is used in assembly.

4.6.1. Bolt Stress in Tightening

During tightening the bolt is stressed by the preload force F_m in tension and by the torque M_{GP} acting in the threads additionally in torsion. Decisive for the calculation is the combined stress σ_{rand} . From the laws of mechanics for inclined planes we can derive:

$$\mathcal{H}_{GA} = F_{M} \frac{d_{R}}{2} \tan \left(\mathcal{Y} + \mathcal{P}^{*} \right) \tag{112}$$

where

$$\tan \varphi = \frac{P}{\pi d_{z}}, \tan \rho^{2} = \mu^{2} = \frac{\mu_{G}}{\cos \frac{\alpha}{2}}$$

In the case of threads with an angle of pressure $\alpha = 60^{\circ}$, we get μ^{*}_{\circ} = 1.155 μ_{\circ} .

In the case of the normally small angles γ and ρ , we can write the following instead of Equation (112):

$$\mathcal{M}_{GP} = F_{M} \frac{d_{2}}{2} \left(\frac{\dot{P}}{\pi d_{2}} + 1.155 \,\mu_{G} \right) \tag{113}$$

If σ_0 is the diameter of the smallest core section A_0 of the bolt and H_P its resistance torque, then the stress ratio becomes:

$$\frac{\tau}{\sigma_{\rm m}} = \frac{M_{\rm OA}}{M_{\rm P}} \frac{R_{\rm O}}{R_{\rm m}} = \frac{2}{d_{\rm O}} \frac{d_{\rm Z}}{d_{\rm O}} \left(\frac{P}{\pi d_{\rm Z}} + 1.155 \,\mu_{\rm O} \right)$$
(114)

The beginning of the yielding of the threaded bolt and the retention of tension during tightening are influenced by the simultaneously acting tension and torsion stress.

With the combined tension:

$$\sigma_{\rm red} = \sqrt{\sigma_{\rm M}^2 + 37^2} \tag{115}$$

there follows for the case that for this comparative tension σ_{rad} , 90% of the minimum elastic limit $\sigma_{p,z}$ of the bolt is allowed:

$$\frac{\sigma_{r \to a}}{\sigma_{m}} = \sqrt{1 + 3} \left(\frac{T}{\sigma_{m}} \right)^{2} = 0.9 \frac{\sigma_{o_{r},2}}{\sigma_{m}}$$
(116)

and

$$\sigma_{\rm m} = \frac{0.9 \ \delta_{0.2}}{\sqrt{1+3} \left[\frac{2 \ d_{\rm m}}{d_{\rm o}} \left(\frac{p}{\pi \ d_{\rm m}} + 1.135 \ \mu_{\rm o} \right) \right]^{\frac{1}{2}}}$$
(117)

In the case of the reduced shank bolts with a reduced shank diameter d_{τ} , which is smaller that the minor thread diameter d_{τ} , the weakest cross section lies in the non-grooved shaft so that, for the calculation of the tension loads $F_{\tau P}$, the normal tension σ_{M} can be inserted with $d_{0} = d_{\tau}$ according to Equation (117):

 $F_{\rm PP} = \sigma_{\rm m} A_{\rm T} = \sigma_{\rm m} \pi/4 \ d_{\rm T}^2 \ . \tag{118}$

The tension load value $F_{\pi\pi}$ for reduced shank bolts in Tables 1 to 4 were calculated with $d_{\pi} = 0.9 \ d_{\pi}$ in this way.

As soon as the reduced shank diameter becomes larger than the diameter $d_{\pm} = (d_2 + d_3)/2$ belonging to the tension cross section, then the weak point in steel bolts usually lies in the reduced shank so that yielding begins here. Since the thread of the bolt is a grooved part, a multiaxial stress develops in this area with stresses of different levels- σ_1 , σ_2 , σ_3 -which cannont be readily calculated. Experiments have proved, however, that we can calculate the intended edge thread at the distance $d_{\pm}/2$ from the axis with the comparable tension $\sigma_{r=0}$ according to Equation (115) and with the diameter d_{\pm} as a reference quantity for the determination of $w_{r=0}$

Therefore, for full shank schrews and thin shank screws where $d > d_{\Xi}$, σ_m becomes

$$\sigma_{m} = \underbrace{0.9 \ \sigma_{0.2}}_{\sqrt{1 + 3} \ \frac{4}{1 + d_{3}/d_{2}}} \left(\underbrace{P}_{\sqrt{d_{2}}} + 1.155 \ \mu_{\odot} \right) \right]^{2}$$
the tension force: (119)

Fap = Om As.

and

Here the tension cross section A_s was based on the values standardized in DIN 13 P. [Blatt] 28 (pub. August 1975). They are based on the nominal values for the pitch diameter d_z and core diameter d_z and thus correspond to the maximum of the tolerance position h.

Also, for the calculation of the reduced shank cross section, the maximum core diameter where $d_{\tau} = 0.9 \cdot d_{\Xi}$ was inserted for the tolerance position *h* according to DIN 13 P [Blatt] 28.

The tension forces determined in this way were rounded off in Tables 1 to 4 so that the rounding error amounts to no more than 1%. 4.6.2. Scattering of the Initial Clamping Load in Tightening

By means of the tightening factor $\varphi_{p} = F_{m} \max / F_{m} \min$, the error of the preload force desired when tightening is considered in the

dimensioning Equation (9) as opposed to the required minimum preload force.

This tightening factor is calculated as:

$$x_{n} = \frac{1 + \Delta F_{v} / F_{vm}}{1 - \Delta F_{v} / F_{vm}}$$
(121)

Here ΔF_{ν} for the various tightening techniques is composed of single errors, which can be added according to the law of error propagation for random errors.

Table 17 gives optimal values for the tightening factor α_{n} for the various tightening procedures. Information concerning the particulars of the most common tightening procedures are contained in [6]. For the most important procedures, only such data will be given in the following which are necessary for the use of this guideline.

4.6.2.1. Torque-Controlled Tightening

Under torque-controlled tightening we understand generally tightening with indicating or signalling torque wrenches. In principle, however, powered tightening with automatic wrenches falls under this category since a compressed air wrench produces a measurable and adjustable torque.

The total tightening torque is a combination of the thread tightening torque and the head and nut friction torque:

$$M_{A} = M_{GA} + M_{K}$$
(122)

$$M_{A} = F_{M} \left[\frac{d_{2}}{2} \tan \left(\gamma + \gamma^{2} \right) + \frac{D_{KM}}{2} \tan \gamma \right]$$
(123)
Given the condition = 60°, this equation can be simplified as:

$$M_{A} = F_{M} \left[0.16 \ P + \mu_{G} \ 0.58 \ d_{2} + \frac{D_{KM}}{2} / 2 \ \mu_{K} \right]$$
(124)

The tension torques M_{mp} in Tables 1 to 4 are calculated with M_{mp} = M_{m} and F_{mp} according to Equations (119) and (120).

Here the simplified assumption $\mu_{\alpha} = \mu_{\kappa} = \mu_{\alpha}$ has no longer been made--deviating from the first edition of the guideling VDI 2230 (pub. Dec. 1974), as well as from the older literature. More recent investigations with separate grasping by the bolt head and thread friction had shown that the grasping of the total friction condition by a ficticious friction coefficient μ_{α} is too imprecise, especially when the friction coefficients μ_{α} and μ_{κ} are very different, as can be the case for modern self-securing joint elements.

The free combination of all possible friction coefficients μ_{\odot} with all possible friction coefficients μ_{\ltimes} would lead, however, to exceedingly extensive tabulation for the tension torque $M_{\odot p}$. For the plotting of the Table 1 to 4 there has been therefore a simplification by which the tabulation remains limited to four tables. For this reason we must take into account a maximum error of about 10%, which is small, however, in relation to the expected estimated error for the friction coefficients μ_{\odot} and μ_{\ltimes} . The simplification is obtained from Figure 27.

Figure 27: Tightening torque M_{mp} and clamping force f_{mp} (90% yield load) as a function of thread friction μ_{m}
If we plot the required tightening torques M_{mp} for the various bolt head friction coefficients μ_{m} above the thread coefficient μ_{0} for the tension forces F_{mp} determined by σ_{mmm} according to Equations (119) and (120), then the curves run approximately horizontal, i. e., the tightening torques M_{mp} are almost totally dependent upon the bolt head friction coefficient μ_{m} in the case of 90% elastic limit utilization due to σ_{mmm} .

The tightening torques H_{ep} given in Tables 1 to 4 are consequently calculated for a constant thread friction coefficient and particularly for μ_{e} = 0.125.

When using Tables 1 to 4 we should proceed as follows: ---Determination of the necessay bolt dimension and strength class for the calculated required tension force F_{-p} and for the thread friction coefficient μ_0 according to Table 5 from the appropriate left part of Tables 1 to 4; followed by

---Location of the tightening torque $\#_{=p}$ which belongs with this bolt dimension and strength class, and specifically from that line of the right side of Tables 1 to 4 which corresponds to the bolt head friction coefficient μ_{tec} estimated according to Table 5.

The calculation of M_{mp} in Tables 1 to 4 according to Equation (124) is based on the nominal size of the pitch diameter and friction radii $D_{\rm Km}/2$ of the bolt head area corresponding to the head dimension of hexagonal recess bolts according to DIN 912 or Draft Standard DIN/ISO 4762 (pub. Dec. 1975) in accordance with those of hexagonal bolts according to Draft Standard DIN/ISO 4014 (pub. Dec. 1975) a bolt hole m according to DIN 69 (pub. Aug. 1971). The values in the Tables are rounded off in such a way that the rounding error is less than 2%.

An even more exact understanding of the different friction coefficients μ_0 and μ_K , particularly in the case of very high thread friction coefficients, is possible if in Equation (124) we replace the term found in the brackets with k - d and also express P and d_2 like $D_{\rm KM}/2$ as a function of d, and insert the mean values for the diameter group M4-M30 with the previously given basic dimensions.

Thus

£

for standard threads $K = 0.0222 + 0.528 \,\mu_{\odot} + 0.668 \,\mu_{K}$ for fine threads $K = 0.0151 + 0.545 \,\mu_{\odot} + 0.668 \,\mu_{K}$.

By this way we get the K values for any pairing of μ_{\odot} with μ_{\ltimes} according to Table 18 with which the tightening torque M_{\Box} for any initial preload F_{\Box} or also the tightening torque $M_{\Box_{\Box}}$ for the clamping force $F_{\Box_{\Box}}$ can be determined according to the Equations:

 $M_{\rm A} = F_{\rm M} - K - d \tag{125a}$

 $H_{\rm mp} = F_{\rm mp} - K \cdot d. \tag{125b}$

In Equation (125b) the yield load F_{-n} for 90% elastic limit utilization taken from Tables 1 to 4 would have to be inserted.

Figure 28 shows the conditions in the case of tightening to the initial preload $F_{\rm M}$ with the consideration of the scattering of the friction coefficient μ_{0} and of the scattering of the applied tightening torque M_{0} . Additionally, $F_{\rm M}$ is plotted as dependent upon the thread torque M_{00} for both values μ_{0} max and μ_{0} min. Furthermore, lines of equal, reduced tension $\sigma_{\rm red} = 0.9 \ \sigma_{0.2}$ and $\sigma_{0.2}$ are included. The maximum initial preload $F_{\rm M}$ max is present in Point X in the case of M_{00} max and μ_{0} min; the least force $F_{\rm M}$ min is present in Point Y in the case of M_{00} max

Figure 28: Tightening torque/preload diagram (with friction scattering and tightening torque scattering).

During assembly according to instruction, σ_{red} should not exceed the amount 0.9 $\sigma_{o.z}$ in the case of torque-controlled tightening.

In the case of torque-controlled tightening with a torque wrench, the total error is composed of the following partial errors: ---Error in the estimation of the friction coefficient; with the estimated friction coefficient the maximum tightening torque $M_{\infty p}$ is determined from either Equation (123) or (124) or from the Tables. ---Scattering of the friction coefficient within a bolt of material lot including the tolerances which affect the friction radii. ---Imprecision of the tightening device including errors in use and reading.

The estimation error for the friction coefficient can be restricted if the designated torque on the original part is determined by elongation measurements on the bolt.

From the results of experimentation and experience up to the present, partial errors result for tightening with torque wrenches which when combined correspond to a tightening factor α_{α} in Table 17.

In the case of "torque-controlled" wrenches we must must differentiate between:

 A) stationary wrenches which can be adjusted within a certain range by regulating the pressure,

B) wrenches with automatic clutches on which the clutch releases at a set torque,

C) precision wrenches with dynamic torque measuring, which is usually done over the wrench support.

All wrenches should be adjusted only in bolt experiments on the original part, whereby the adjustment of the wrenches like a) and b) can either be done via retightening torque or the exact lengthening measurement on the bolt.

The retightening torque is the torque which is specifically required to turn the bolt further after tightening is completed. It differs from the designated tightening torque for torque tightening by the retightening factor, which, according to the type of wrench and the friction and elasticity conditions, can vary between 0.85 and 1.32 [6].

The following partial errors arise: Adjustment by Way of Retightening Torque ---Errors when estimating the friction coefficient for the determination of the designated tightening torque for torque tightening. ---Errors when estimating the retightening factor by which the tightening torque differs for the designated tightening torque. ---Tool and reading erros when measuring the retightening torque. ---Errors from faulty accuracy of mean value in the case of adjustment attempts: the greater the number of adjustment attempts, the smaller the errors.

24

Adjustment by Way of Elongation Measurement

----Errors from elongation measuring (tool errors, reading errors, dimension and Young's modulus variations of the bolt). ----Scattering of the preload force when adjusting powered wrenches.

The adjustment of the wrench as described in c) should also be done on the original part, whereby in a sufficient number of bolting experiments the given torque can be measured either in the wrench itself or by torque measuring devices placed on the wrench.

The most precise type of adjustment here is also the determination of the designated tightening torque by way of elongation measurement of the bolt. Less precise is the determination of the designated tightening torque by mutual clamping of piezoelectric ergostat units or even the estimation of the friction coefficient and tabular or mathematical determination of the designated tightening forque.

For determining the partial errors for bolts as described in c), the same is logically valid as previously stated for the tightening done with a torque wrench.

The empirical values available to date [6] allow the recommendation of optimum values for torque-controlled tightening with wrenches according to Table 17.

4.6.2.2. Elastic Limit-Controlled Tightening Procedures

Elastic limit-controlled tightening methods are based on the fact that when the elastic limit of the bolt material has been reached, the tightening torque no longer increases linearly with the angle of rotation, i.e., the d M_{e} / $d\vartheta$ = constant or d= M_{e} / dϑ= = 0. This principle is realized in the following way in the case of the prototypes of bolts developed currently:

An air-driven torque wrench with an electric control unit first

الهائلة المعاملية ومراج

tightens the joint to a "setting torque" in order to bring all interfaces firmly into contact. Beginning at this point, the appropriate differential quotient is computed and stored by way of an adjustable length of chord of the N_{α} , ϑ -curve, Figure 29. As soon as this differential quotient falls on a firmly set fraction of the maximum value ($\Delta N_{\alpha} / \Delta \vartheta$) mex when the elastic limit of the bolt material is reached, the wrench is disengaged by a quick release valve. In this way the desire preload in the case of assembly of a bolt and material lot is largely independent of the friction effects and influenced solely by the scattering of the elastic limit of the bolt material in a lot (upper and lower F_{ν} -curve in Figure 29). The plastic elongations, which the bolts experience thereby, lie in the order of magnitude of the values with which the $\sigma_{\alpha,2}$ -limit for materials with the unspecified yield strength is defined (0.2%) so that the reusability of "elastic limit-controlled" tightened bolts is not practically impaired.

and a summer of the second second

A tightening factor α_{A} is not needed for this procedure (see Sec. 2.1) since the bolts are dimensioned according to $F_{m,min}$. For comparison of the precision with other procedures, $\alpha_{A} = 1$ is given in parentheses in Table 17.

<u>4.6.2.3. Tightening Procedures which Exceed the Elastic Limit</u> (Angle-of-Rotation-Controlled)

.

Angle-of-rotation control of the tightening procedure is also used today for power tightening in the practice of mass production. Control by way of the angle of rotation is indirectly control by elongation measurement. Since in the case of angle-of-rotation-controlled tightening, plastic deformations of the clamped parts are also measured, Figure 30, this process attains its greatest precision only when the joint is first clamped with a "setting torque" at an intermediate

preload force F_{MT} , and from that is further clamped at a certain angle \mathcal{L} in the plastic area of the bolt, Figure 30. As in the case of elastic-limit-controlled tightening, a slight effect of friction is produced by the fact that the combined stress

 $\sigma_{r=d} = \sqrt{\sigma_m^2 + 3\tau_2}$

exceeds the elastic limit in the case of lower preload force values if the thread torque, and therefore γ likewise, increases as a result of greater thread friction.

- scattering of the elastic limit force in a bolt lot
- 2. preload F_{ν} , tightening torque M_{μ}
- 3. preload F_{∇}
- 4. tightening torque MA
- 5. disengagement point at ... [see equation]
- . pre-tightening moment
- 7. angle of rotation →

Figure 29: Elastic-limit-controlled tightening (powered).

For normal friction coefficient scattering this effect is negligible. Since the elastic limit is always reached or surpassed, variations are produced in the specified initial preload F_m as in the case of elastic limit controlled tightening only from the tolerance of the elastic limit.

The essential difference between this and elastic-limit-controlled tightening consists in the fact that the greatest precision is specified only in the case that the elastic limit of the bolt material is exceeded and, due to this, greater plastic deformations of the bolt must be accepted. Due to this, the reusability of the bolts is restricted, and the process can only be used for bolts with sufficiently ductile material as well as with sufficiently large extension length (also with free thread lengths).

For the specification of a tightening factor φ_A the same is valid as for elastic limit controlled tightening.

4.6.2.4. Impulse-Controlled Tightening (Impact Wrenches)

Impact wrenches transmit energy through impulse; therefore, a given torque is hardly measurable.

The adjustment of impact wrenches must be done, as in the case of torque wrenches, on the original bolting part. It is more precise by elongation measurement on the bolt, and less precise by tightening torque. The consideration of errors is logically the same as in the case of torque wrench types a) and b). From [6] as well as other empirical values, the tightening factors in Table 17 must applied. The tightening factors are so high that this tightening procedure cannot be recommended for high duty bolted joints.

Figure 30: Angle of rotation-controlled tightening (past yield).

Page 79

5. Calculation Examples

5.1. Calculation of a Bolted Joint between Piston and Piston Rod in a Hydraulic Cylinder as an Example of Concentric Clamping and Concentric Loading

5.1.1. Basic Conditions

According to Figure 31, the bolted joint is calculated as a concentrically clamped and concentrically loaded joint. In the case of an internal pressure of 5.5 N/mm² and a pressure-bearing surface of 4536 mm², the axial force is produced at:

 $F_{\rm A} = 24.9 - 10^3$ N.

The cylinder is part of a press with 300 working strokes per hour The axial force is accordingly considered as a dynamic working load.

The residual clamping force should amount to at least $F_{KR} = 10^3 \text{ N}$ for security reasons because of the sealing function of the bolt in the case of unloading by the working load.

The piston material is C45V.

The joint should be tightened with a gauged torque wrench.

Figure 31: Hydraulic cylinder with central bolted joint between the the piston and piston rod.

5.1.2. Calculation Process

The joint is calculated following the calculation steps <u>S 1</u> to <u>S 2</u> given in Sec. 2.2.

<u>S 1.</u> Rough determination of the bolt diameter and of the clamping length ratio $I_{\kappa} \neq d$, as well as the bearing stress under the bolt head.

With the aid of Table 6, we can assess a required preload of 63 - 10^3 N for a concentrically acting dynamic working load in the bolt of $F_{\rm A}$ = 24.9 - 10^3 . From the possible diameter/strength combinations, a bolt M 12 X 60 DIN 912 - 12.9 is chosen.

This amounts to the clamping length ratio

 $I_{\rm M}$ / d = 42 / 12 = 3.5

 $(I_{\rm K} = 55 \, \rm{mm} - t_1)$

and the second second

The bearing stress under the bolt head is

$$\rho = \frac{F_{mp}}{A_{pr}} / 0.9 = 741 \text{ N/mm}^2$$

(from Table 1 for $\mu_{\rm B}$ = 0.125: $F_{\rm mp}$ = 67,000 N; (Equation (28)): $A_{\rm m}$ = 100.5 mm²).

The allowable bearing stress for C 45 V according to Table 14 amounts to:

Pe = 900 N/mm[∞]

Thus:

p < po.

<u>S.2.</u> Determinatic. of the tightening factor α_{p_1}

The bolt should be tightened with a gauged torque wrench. From Table 17 follows: $\alpha_{p} = 1.6$.

<u>S.3.</u> Determination of the required minimum clamping force Figure.

The required minimum clamping force must at least be equal to smallest residual preload intended for the problem $(F_{Korrf} = F_{KR})$. Thus it is:

 $F_{\rm Here} = 10^{-5} \, \rm N_{\odot}$

<u>5.4.</u> Determination of the preload force loss F_z as a result of embedding.

According to Table 7, a total embedding amount of $f_z = 6 \ \mu m$ is produced for three interfaces (incl. threads) and the clamping length ratio 3.5.

The rough determination of the force ratio according to Table 8 is: $\Phi{\kappa} = 0.24$.

The rough determination of the elastic resilience of the clamped parts according to Table 9 is:

 $\delta_{\rm P} = 0.76 \cdot 10^{-3} \,\mu{\rm m} \,/\,{\rm N}_{\star}$

The preload force loss therefore becomes (Equation (48)): $F_z = f_z \frac{\tilde{\omega}_k}{\tilde{\omega}_z} = 1.9 - 10^3 \text{ N}.$

<u>S.5.</u> Determination of the force ratio ϕ .

Corresponding to Figure 17b, we estimate that the load introduction levels lie at the distance $nI_{K} = 0.3 I_{K}$. Thus:

 $\Phi = \Phi_n = 0.3 \Phi_K = 0.072.$

<u>56.</u> Determination of the required bolt size.

According to Equation (9):

 $F_{\rm M} = \alpha_{\rm A} [F_{\rm Kert} + (1-\bar{a}) F_{\rm A} + F_z] = 41.6 - 10^3 N_{\star}$

From Table 1 (full shank bolt) $\mu_{0} = 0.125$, a required bolt M10 DIN 912 - 12.9 with a tension force of $F_{mn} = 46 - 10^{3}$ N is obtained for the condition $F_{mp} > F_{m max}$.

<u>S.7.</u> Precise determination of the clamping length ratio I_{κ} / d and control of Φ_{κ} and δ_{r} .

With the dimensions of the new bolt this becomes:

 $\mathbf{\tilde{o}}$ = 0.22 from Table 8 for $I_{\rm K}$ / d = 44/10 = 4.4

 $\delta_{\rm P} = 1.0 - 10^{-3} \,\mu{\rm m}$ / N from Table 9

and therefore

 $F_{z} = f_{z} \frac{\phi_{w}}{\phi_{m}} = 1.3 \cdot 10^{3} \text{ N}$ $\phi = \phi_{n} = \pi \phi_{w} = 0.3 \cdot 0.26 = 0.066$ $F_{m} = \alpha_{a} [F_{wmrf} + (1-\phi) F_{a} + F_{z}] = 40.9 \cdot 10^{3} \text{ N}.$ Since $F_{mp} = 46 \cdot 10^{3} \text{ N} > F_{m}$ mer, we select bolt M10 X 60 DIN 912 -

12.9.

The corresponding maximum tension torque amounts to the following: for μ_{K} min = 0.10 according to Table 1, for M_{SP} = 72 Nm according to Table 5.

According to Equation (11) a tightening torque of

 $M_{\rm A} = 0.9 M_{\rm Hm} = 65 \,\rm Nm$

must be provided.

<u>S.8.</u> Test for compliance with the allowable bolt load.

According to Equation (13) there must be:

● FA < 0.1 60.2 Am.

This relation reads with number values:

 $0.066 - 24.9 - 10^3 N < 0.1 - 63 - 10^3 N$

(see also Table 11).

The condition according to Equation (13) is fulfilled, i.e., the maximum bolt load is not surpassed.

<u>S.9.</u> Determination of the dynamic fatigue stress of the bolt.

It is

$$\sigma_{a} = + \frac{\sigma_{a}}{2} = + \frac{\overline{\Phi}_{n} F_{A}}{2 A_{3}} \sigma_{A}$$

 $\sigma_{A} = \pm 55 \, \text{N/mm}^{2}$

(from Table 13 on the dotted auxiliary line plotted for torque-controlled tightening)

$$A_{3} = 52.3 \text{ mm}^{2}$$

 $\sigma_{1} = \pm 0.066 - 24.9 - 10^{3} \text{ N/mm}^{2} = 15.7 \text{ N/mm}^{2} < \sigma_{n}$
 $2 - 52.3$

<u>S 10.</u> Calculation of the bearing stress under the head bearing area.

$$p = \frac{F_{ep}}{A_{p}} \frac{10.9}{A_{p}} \leq p_{0}$$

 $A_{\rm m} = 106 \text{mm}^2$ (according to Equation (28))

$$p = \frac{46 - 10^3 / 0.9}{106} = 482 \text{ N/mm}^2$$

The allowable bearing stress for C 45 V according to Table 14 amounts to

 $p_{\odot} = 900 \text{ N/mm}^2$.

With that it is

 $p < p_{0}$

5.2. Calculation of Bolts of a Positive-acting Clutch as an Example of Bolt Loading with Transverse Force

5.2.1. Basic Conditions

The joint on a disc clutch, Figure 32, is to be measured. The torque which securely transmits the coupling effect (in both directions of rotation) amounts to

 M_{\pm} max = 13 - 10² Nm.

Both clutch halves are composed of cast iron 20 and are connected with i = 12 hexagonal bolts according to DIN 931. As adhesive friction coefficient of the material combination cast iron/cast iron, we have accepted $\mu_{0} = 0.15$.

Figure 32: Bolted joint on a plate clutch.

The diameter of the bolted part amounts to

 $D_{\star} = 258$ mm.

Therefore we obtain a circumferential force per bolt of:

$$F_{\rm G} = \frac{2M_{\rm e}}{i + D_{\rm e}} = 8.4 - 10^3 \,\rm N$$

and a clamping force of

$$F_{K = r \neq} = \frac{F_{\alpha}}{\mu_{\alpha}} = 56 - 10^3 \text{ N}$$

The clamping length (see Figure 32) amounts to $I_{\rm H}$ = 60 mm.

5.2.2. Calculation Process

<u>S 1.</u> Rough determination of the bolt diamete d with the aid of Table 6.

 $F_{\alpha} = 8.4 - 10^{3}$ N dynamic. The bolts are tightened with a torque wrench. Consequently we obtain by way of A with 10,000 N as the next greater comparative force B with four steps for dynamic transverse force F_{α} finally F_{m} min = 63,000 N C with one step for tightening with a torque wrench F_{m} max = 100,000 N D according to this from Column 1 of Table 6 a bolt size M16 if we choose the strength class 10.9. With the clamping length $I_{K} = 60$ mm the clamping ratio amounts to

 $\frac{I_{\rm H}}{d} = \frac{60}{16} = 3.75$

A hexagonal bolt 16 X 80 DIN 931 - 10.9 is chosen with $d_{\kappa} = 24 \text{ mm diameter}$ $B_{B} = d_{R} = 17 \text{ mm diameter}$ $I_{1} = 53 \text{ mm}$ $I_{R} = 7 \text{ mm}$. Testing of the bearing stress under the bolt head: $p = \frac{f_{mn}}{A_{m}} \frac{10.9}{5} \leq p_{m}$; $f_{mn} = 105 \cdot 10^{2} \text{ N in the case of } \mu_{m} = 0.125 \text{ from Table 1}$ $A_{m} = \frac{\pi}{4} \frac{10}{6} \frac{10}{6} = 100 \text{ mm}^{2}$ (0.5 mm hole thread!)

 $p = 590 \text{ N/mm}^2 < p_{\odot} = 750 \text{ N/mm}^2$ according to Table 14.

<u>5.2.</u> Determination of the tightening factor α .

From Table 17 we get the following for tightening with a torque wrench

 $\alpha_{n} = 1.6$

<u>S.3.</u> Determination of the required minimum clamping force F_{Kmrr} for given friction contact joint for the taking up of a defined dynamic transverse force F_{α} .

 $F_{Kerr*} = 56 - 10^3 \text{ N} \text{ (see Sec. 5.2.1.).}$

<u>S 4.</u> Determination of the preload force loss due to embedding.

There are four interfaces including the threads.

 $I_{\rm K}$ / d = 3.75

from Table 7:

 $f_z = 4 - 1.25 = 5.0 \ \mu m,$

from Table 8 and Figure 32

with $D_{A} \approx 50$ mm diameter $\frac{D_{A}}{d_{K}} = \frac{50}{24} = 2.08 \approx 2$

this becomes $\Phi_{\rm sc} = 0.416$ (GG)

from Table 9

Ξ

 $\delta_{p} = 1.4 - 10^{-3} \mu m/N$ $F_{z} = f_{z}^{2} \frac{\Phi_{rc}}{C_{p}} = 1.48 - 10^{3} N$

<u>S 5.</u> [Is not necessary, since the working load appears here as a transverse force.]

<u>5.6.</u> Determination of the required bolt size.

The maximum initial preload force is determined with:

$$F_{M max} = \alpha_{A} [F_{K=r+} + (1-\tilde{\omega}_{K}) F_{A} + F_{z}]$$

Since $F_A = 0$, then

Fm max = CA [FKart + Fz]

 $F_{\rm mmm} = 9.2 \cdot 10^3 \, {\rm N} < F_{\rm mp} = 105 \cdot 10^3 \, {\rm N}.$

<u>S 7.</u> [Is not nedessary.]

<u>S 8.</u> [Is not necessary.]

<u>S 9.</u> [Is not necessary.]

<u>5 10.</u> Proof is already rendered by <u>5 1.</u>

Thus the measuring task is completed.

The maximum tightening torque belonging with F_{mp} = 105 \cdot 10⁻³ N in

the case of μ_{0} = 0.125 according to Table 1 amounts to

 $M_{\rm wp} = 260 \, \rm Nm$

for $\mu_{K \min} = 0.10$ according to Table 5.

According to Equation (11) a tightening torque of

 $M_{\rm A} = 0.9 - M_{\rm mp} = 0.9 - 260 = 234 \, {\rm Nm}$

is to be applied.

5.3. Calculation of a Flywheel Fastening Using a Central Bolt as an Example of Bolt Loading with Torsion Shearing

5.3.1. Basic Conditions

The bolted joint should transmit securely a maximum torque of 110 Nm.

Taken strictly, the torque introduction occurs from the crank shaft to the flywheel in two ways:

--directly from the crank shaft to the flywheel,

Since as a result of the rotational elasticity of the hollow bolt only a decreasingly small portion flows in the second way, the full torque is introduced in the first way for calculation for security

Figure 33: Fly-wheel fastening by means of a central bolt.

As a result of the rotationally symmetrical form of the clamping and clamped parts, the fastening of a flywheel with a central bolt is an example of a concentrically clamped bolted joint. For design reasons the bolt must be designed as a hollow bolt.

5.3.2. Calculation Process

The designed joint is calculated on the basis of the Calculation Steps <u>S 1</u> to <u>S 10</u> given in Sec. 2.2.

<u>S.1.</u> Rough determination of the bolt diameter and of the clamping length ratio $I_{\kappa} \neq d$.

For design reasons a hexagonal bolt with the thread M 27 \times 2 of the strength class 8.8 was chosen (without regard to Table 6).

The clamping length ratio I_{κ} / d amounts to (see Figure 33): 16/27 = 0.59.

Rough determination of the area surface pressure under the bolt head.

In this case it can drop out since the clamping force of the hollow bolt is relatively low, and therefore the contact pressure under the head probably lies within the dependable contact pressure value.

Precise calculation is produced in Step 10.

<u>S.2.</u> Determination of the tightening factor α_{α} .

The bolt should be tightened with a gauged torque wrench.

Tightening factor $\alpha_n = 1.6$ according to Table 17.

<u>**R.3.</u>** Determination of the required minimum clamping force $F_{Mart.}$ Known torque $M_T = 110$ Nm.</u>

Mean effective friction radius

$$\frac{D_{\rm km}}{2} = \frac{1}{3} \frac{D_{\rm m}^3 - D_{\rm m}^3}{D_{\rm m}^2 - D_{\rm m}^3} = 19.7 - 10^{-3} {\rm m}.$$

Friction coefficient in the interface μ_{TT} is accepted at 0.125. For the production of the friction contact this becomes:

$$F_{\text{Kmr}} = \frac{M_{\tau}}{\mu_{\text{Tr}}} = 44.4 \cdot 10^3 \text{ N}$$

<u>S 4.</u> Determination of the embedding amount f_z .

For four interfaces (incl. the thread) an embedding amount of $f_z = 3 \ \mu m$.

Page 91

Since this is the case of a hollow bolt, Tables 8 and 9 cannot be used for the determination of the elastic resilience of the clamping and clamped parts and of the force ratio 6. The elastic resilience of the bolt is determined according to Equation (26) (see Sec. 3.1.1.)

 $\delta_{m} = \delta_{m} + \delta_{1} + \delta_{m}.$

With $I_1 = 16$ mm, $A_1 = 252$ mm² and $E = 21 - 10^{-1}$ N/mm² it becomes: $\delta_1 = \frac{I_1}{E A_1} = 0.30 - 10^{-3} \mu m/N$

The elastic resilience of the bolt head and of the screwed-in threads produces, under support of Equation (27) with

 $A_{\rm N} = 371 \text{ mm}^2$, the following:

 $\delta_{\rm H} = \delta_{\rm C} = 0.14 - 10^{-3} \, \mu {\rm m/N}.$

ENote: There was no correction of the factor 0.4 because the greater resilience of the head and the smaller resilience of the threads mutually cancel one another.]

Therefore the following is obtained:

 $\delta_{3} = 0.58 - 10^{-3} \mu m/N.$

The elastic resilience of the clamped parts is obtained from Equation (31) (see Sec. 3.1.2.1.) where

 $I_{\text{K}} = 16 \text{ mm} \text{ and } A_{\text{mm}} = 324 \text{ mm}^2 \text{ according to Equation (29) as}$ $\frac{\delta_{\text{m}} = I_{\text{K}}}{R_{\text{mm}} = 0.24 - 10^{-3} \mu \text{m/N}}$

When the load introduction is accepted under the bolt head or at the transfer of bolt shaft/thread, a force ratio is obtained according

2

to Equation (53) as

$$\mathbf{\hat{o}} = \mathbf{\hat{o}}_{\mathbf{k}} = \frac{\delta_{\mathbf{p}}}{\delta_{\mathbf{m}} + \delta_{\mathbf{p}}} = 0.29$$

and therefore a preload force loss as a result of embedding of

$$F_z = f_z \frac{\bar{\Phi}_{\mathrm{H}}}{\delta_{\mathrm{H}}} = 3.6 \cdot 10^3 \,\mathrm{N}.$$

<u>56.</u> Calculation of the design-established bolt measurements.

With Equation (9) (see Sec. 2.1.) and

 $F_{A} = 0$ as well as $F_{K_{BFF}} = 44.4 - 10^{3}$ N then

 $F_{\rm M} = \alpha_{\rm A} [F_{\rm Kert} + (1-b) F_{\rm A} + F_{\rm Z}] = 76.8 - 10^3 N.$

Since Tables 1 to 4 are not applicable for the hollow bolt treated in this example, the dependable clamping force must be calculated. The following is produced by logical application of Equations (115) through (118) (see Sec. 4.6.1.):

 $F_{mp} = 133 - 10^3 \text{ N} (> F_{m max})$ in the case of $\mu_{\Theta min} = 0.125$.

The bolt measurements are thus sufficient.

The required torque can be calculated with $\mu_{G_{min}} = 0.125$ and μ_{κ} min = 0.10 (Table 5) according to Table 18 with K = 0.15:

Ma = 485 Nm.

<u>S 7.</u> [The control calculation for I_{K} / d and \mathfrak{G}_{K} can drop out.] <u>S 8.</u> [Since the axial force is $F_{A} = 0$, the test for compliance with the allowable bolt force is not necessary.]

<u>5</u> 9. [Due to the lack of the axial force F_{A} , the determination of the dynamic fatigue stress also is not necessary.]

<u>S 10.</u> Calculation of the bearing stress.

The bearing stress between the bolt head and the hard washer amounts to:

with $A_{\rm m} = 310 \, {\rm mm}^2$

$$p_{\text{max}} = \frac{F_{\text{mp}}}{A_{\text{m}}} = 430 \text{ N/mm}^2.$$

The allowable bearing stress according to Table 14 amounts to for steel 50

 $p_{\rm G} = 500 \, {\rm N/mm^2} > p_{\rm max}$

5.4. Calculation of a Big-end Bearing Cover Joint as an Example of Eccentric Clamping and Eccentric Loading

5.4.1. Basic Conditions

· · · - - - - - -

The big-end bearing cover joint according to Figure 34 is for an automobile motor and is calculated as an eccentrically clamped and eccentrically loaded bolted joint. From a design standpoint, the bolts are of the strength class 12.9 with the thread measurements M 9 X 1 and the nuts of the strength class 12. The bolts are tightened with a precision torque wrench. C 45 was chosen as the material for the clamped parts. In the case of a nominal rpm-rate (n = 4000 rpm) the following basic quantities are produced:

Figure 34: Action forces in the interface of a big-end bearing cover joint.

axial force in the interface:

 $F_{\rm A} = 3.7 \cdot 10^3 \, {\rm N_{\odot}}$

bending moment in the interface ENote: Determined according to

 $#_{\pm} = 30 \text{ Nm},$

transverse force in the interface ENote: Determined according to E1911.

 $F_{c} = 420 \text{ N}.$

From the bending moment $\mathcal{H}_{\mathcal{P}}$ and the axial force $\mathcal{F}_{\mathcal{P}_{\mathcal{P}}}$ the lever arm of the eccentric load application can be determined as

 $= \frac{H_{R}}{F_{A}} = 8.2 \text{ mm}$

whereby it was accepted in a simplified fashion that the bending moment is constant over the clamping length ratio I_{κ} .

5.4.2. Calculation Process

The calculation is produced according to the Steps <u>S_1</u> to <u>S_10</u> given in Sec. 2.2.

<u>S I.</u> Rough determination of the bolt diameter d and of the clamping length ratio $I_{\rm H}$ / $d_{\rm c}$

The bolt diameter is given from the design plan with 9 mm, Figure 37. The clamping length ratio amounts to IK / d = 41.5 / 9 = 4.6.

Rough determination of the bearing stress under the bolt head.

$$p = \frac{F_{mp}}{A_{o}} \stackrel{f}{=} \frac{1}{p_{o}} p_{o}$$

 $F_{mp} = 40 - 10^{m}$ N in the case of $\mu_{\Theta} = 0.125$ by interpolation from Table 3.

With $A_{\rm p}$ = 65 mm² this becomes

$$\rho = \frac{40 - 10^3}{0.7 - 45} = 682 \text{ N/mm}^2 < \rho_0 = 900 \text{ N/mm}^2$$

Allowable bearing stress according to Table 14.

<u>S.2.</u> Determination of the tightening factor $\alpha_{p_{1}}$

The bolt is tightened with a precision torque wrench with adjustment of the bolt over the elongation measure of the bolt (according to previous calibration of the bolt as a force measuring instrument).

Tightening factor σ_{p} =1.6 according to Table 17 (for large angles of rotation, fine threads, resilient joint).

<u>S.3.</u> Determination of the required minimum clamping force $F_{H=r^*}$. a) Friction contact requirement in the interface (μ_{Tr} = 0.125)

$$F_{\text{KHFF}} = \frac{F_{\text{G}}}{\mu_{\text{TF}}} = 3.4 \cdot 10^3 \text{ N}.$$

.

b) In order to avoid one-sided lift-off during the nominal rpm of the motor, F_{Harrif} is calculated in accordance with Equation (78) (see Sec. 3.2.4.2.) with the measurements from Figure 35 as

 $F_{K=r} = \frac{(a - s) u}{k_{B}^{2} + su} F_{A} = 9.94 - 10^{3} N.$

Figure 35: Dimensions of the clamping and clamped parts of the big-end bearing cover joint.

A dimensions of the bolt in mm B thread dimensions in mm interface coefficients

D dimensions of clamped parts in mm E location

<u>5.4.</u> Determination of the embedding amount f_z of the elastic resilience of the clamping and the clamped parts and of the force ratio 0. (see Sec. 3.1.1. and 3.1.2.)

С

Embedding amounts according to Table 7:

 $f_z = 5 \ \mu m$ for four interfaces (incl. threads).

Because of the fact that the bolt used is non-standard, the

resiliencies of the clamped parts and the force ratio cannot be determined directly according to Tables 8 and 9, but rather are to be calculated individually.

Resilience of the bolt according to Equations (25), (26) and (27) $\delta_{\rm m} = 3.7 - 10^{-3} \,\mu{\rm m/N}.$

Resilience of the clamped parts:

In the case of the determination of the resilience of the clamped parts, the slight eccentricity of the bolt ($s \approx 0.3$) is not considered, thus not δ_{r} , but rather δ_{r} is determined. The initial preload force which conditions the embedding acts concentrically.

With A_{mrm} according to Equation (29) this becomes with Equation (31)

 $\delta_{-} = 2.6 - 10^{-3} \,\mu m/N.$

Force ratio @ according to Equation (53):

$$b = \frac{\delta_{r}}{\delta_{r} + \delta_{s}} = 0.41.$$

With that the preload force loss as a result of embedding becomes $F_z = f_z \frac{\sigma_w}{\sigma_z} = 0.79 - 10^{2} N.$

<u>S 5.</u> Determination of the force ratio $\bar{\Phi}$.

The transmission of bending moments and normal forces in the interface leads to a bolted joint with eccentric load application. Besides this, the load introduction does not take place under the bolt head and the nut but rather within the clamped parts. Since the largest part of the bolt pipe of the small-end hole can be considered as a clamping sleeve, n = 1/3 is estimated here.

Corresponding to Equation (68) this becomes with $s = 0.3 \text{ mm}, a = 8.2 \text{ mm}, A_{22} = 171 \text{ mm}^2 \text{ and } A_{mm} = 75 \text{ mm}^2$: $\Phi_{mm} = n \frac{\delta_{m}}{\delta_m} \frac{(1 + a/s)^2}{(1 + \lambda^2)} = 0.15$

<u>S.6.</u> Determination of the required bolt size.

According to Equation (9) (see Sec. 2.1.) the maximum initial preload amounts to

 $F_{m max} = \alpha_{A} \left[F_{Karrf} + (1 - \Phi_{arr}) F_{A} + F_{z} \right] = \alpha_{A} F_{m max}.$

._...

For the case of bearing cover bolting, $F_{m,min}$ must still be increased at the amount F_{-} which is required for the elastic and plastic deformation of the bearing bushings in order to overcome the bearing excess.

For overcoming the bearing excess, an axial force of $6.2 - 10^3$ N per bolt is necessary according to *Roemer* [20].

Thus valid for this case is:

 $F_{m max} = \alpha_{n} [F_{kar+} + (1 - \alpha_{n}) F_{n} + F_{z} + F_{z}]$

= 1.6 (9.94 + 3.15 + 0.79 + 6.2) - 10^3 N = 32.1 - 10^3 N.

If we accept a friction coefficient $\mu_{\odot \min} = 0.125$ according to Table 5, we obtain for the bolt M9 X 1 of the strength class 12.9 according to Equation (118) a tension force of

 $F_{mp} = 45.1 - 10^{3} \text{ N} > F_{m}$ men

and a tension moment according to Equation (124) where $\mu_{K,min} = 0.125$ of $H_{mp} = 68$ Nm.

For the assembly, then, the mean tightening torque is obtained:

 $M_{eq} = 0.9 - M_{eq}$

 $M_{\rm A} = 61$ Nm.

Thus the bolt is correctly dimensioned.

<u>S.7.</u> [The check for I_{K} / d can be eliminated since these values were already accurately determined.]

<u>58.</u> Test for compliance with the maximum allowable bolt force.

 $\Phi_{en} \ F_{e} \stackrel{\leq}{=} 0.1 \ \sigma_{0.2} \ A_{T}$ $0.15 \quad 3.7 \quad 10^{3} < 0.1 \quad 1062 \quad 54.8$ 555 < 5800.

<u>S 9.</u> Determination of the dynamic fatigue stress of the bolt.

The bolt is stressed due to eccentric clamping and loading by tension and bending.

According to Equation (100) (see Sec. 3.2.4.3.):

$$\sigma_{\text{max}} = \begin{bmatrix} 1 + \left(\frac{1}{\hat{\Phi}_{\text{max}}} - \frac{s}{s}\right) \frac{I_{\text{max}}}{I_{\text{max}}} \frac{\varepsilon}{\varepsilon} \frac{s}{s} \frac{\sigma}{A_{\text{max}}} \frac{d_{\text{max}}}{s} \end{bmatrix} \frac{\hat{\Phi}_{\text{max}}}{A_{\text{max}}}$$

follows with the measurements from Figure 35 and

 $\Phi_{mn} = 0.15$, $I_{mn} / I_{mnm} = 1$, $A_{m} = 171 \text{ mm}^2$ $F_m = 3.7 - 10^3 \text{ N}$, $E_m / E_m = 1$, $I_m = 2465 \text{ mm}^2$ and $k_m^2 = 14 \text{ mm}^2$

on the tension side:

Ĺ

 $\sigma_{enc} = (1 + 3.96) \ 12.1 \ N/mm^2 = 12.1 \ N/mm^2 + 47.9 \ N/mm^2 = 60 \ N/mm^2.$ With extention measuring markings which were placed on the bolt shaft in the vicinity of the interface, a tension variation was measured in the case of a minimum preload $F_{verr} = 13.1 - 10^3$ N after application of the axial force $F_m = 3.7 - 10^3$ on the tension side as opposed to the preload of 52 N/mm², and on the pressure side there was a preload of -32N/mm² measured. From this there is a tension clamping portion of 10 N/mm² produced (12.1 N/mm² was calculated), and a bending clamping portion of 42 N/mm² (47.9 N/mm² was calculated).

Figure 36 shows the comparison of calculated and measured tension distribution in the interface plane of the bolt.

Figure 36: Tension distribution in the interface planes of the bolt.

The dynamic stress fatigue of the bolt on the tension side amounts to

 $\sigma_{m} = \frac{\sigma_{max}}{2} = \frac{+}{30} \, \text{N/mm}^2$

From Table 13 we can obtain an endurance strength on the dotted auxiliary line plotted for torque controlled tightening of at least:

 $\sigma_{A} = \pm 55 \text{ N/mm}^2$,

Therefore:

 $\sigma_{-} < \sigma_{-}$

_ __ . .

<u>5 10.</u> Calculation of the contact pressure under head and nut.

$$p = \frac{F_{mp}}{A_{p}} = 772 \text{ N/mm}^2$$

 $p < p_{\odot} = 900$ N/mm² according to Table 14.

-

7age 101

5.5. Calculation of a Cylinder Cover Bolting as an Example of Eccentric Clamping and Loading

5.5.1. Basic Conditions

The bolted joint between a cover and a hydraulic cylinder which is internally pressurized is to be dimensioned. The cylinder is constructed out of steel 50, the cover out of C 45 V. The greatest internal pressure amounts to

Pmax = 20 N/mm2.

It can decrease in the course of functioning to

 $P_{m1n} = 6 \, \text{N/mm}^2$.

(

Figure 37: Bolt arrangement for the cylinder joint.

The following quantities are based on a primary design (see Figure 37):

Internal cylinder diameter $D_1 = 140 \text{ mm}$ External cylinder diameter in the
area of the cover bolting $D_m = 210 \text{ mm}$ Number of boltsi = 13.

In the case of maximum pressure, the residual clamping force per bolt amounts to at least

 $F_{\rm MR} = 3000$ N.

The bolts should be tightened with a gauged torque wrench.

With that we are able to calculate:

---external diameter of the clamped sleeves

 $D_{\rm m} = 1/2 \ (D_{\rm m} - D_{\rm s}) = 35 \ {\rm mm};$

--- the greatest axial pressure force in the cylinder

 $F_{max} = \pi/4 \ D_s^2 \ p_{max} = 308 \ \cdot \ 10^3 \ N_s^2$

--- the smallest axial pressure force in the cylinder

 $F_{min} = \pi/4 \ D_i^2 \ p_{min} = 92.4 - 10^3 \ N_3^2$ ---working loads on a bolt

$$F_{B} = F_{BD} = \frac{F_{max}}{2} = 20.5 - 10^3 \text{ N}$$

 $F_{B} = F_{BL} = F_{max} = 6.16 - 10^3 \text{ N}$

5.5.2. Calculation Process

<u>S1.</u> Rough determination of the bolt diameter d_{and} the clamping length ratio $I_{\rm H}$ / $d_{\rm s}$

We are dealing with an eccentrically loaded bolted joint produced by the perimeter moment of the bending of the circular plate of the cover. The dimensioning of the bolts is selected under the assumption of a bending-resilient cover which is firmly clamped in the bolt plate

(the system line of the end cylinder). The cover is a circular plate with constant plate thickness. Local contact resiliencies and the bending resilience of the cylinder in the since of the theory of circular cylinder bearings are neglected. Additionally, we can consider an eccentric clamping due to the differentiating situation of the axses of rotation of the collaborating pressure body and the bending body. Given these assumptions we are on the safe side when dimensioning the bolts.

The following bolt sizes are produced for $F_{\infty} = F_{\infty}$ with the aid of Table 6 for dynamically and eccentrically loaded bolts in the direction of the axis and for tightening with a gauged torque wrench:

- A with 25,000 N the next greatest bolt strength $F_{\rm A}$ = 25000 N > 20,500 N.
- B with two steps for a dynamic and eccentrically acting working force $F_{m-min} = 63,000$,
- C with one step for tightening with a torque wrench now $F_{\rm m,max} = 100,900$ N.
- D with $F_{mmax} = 100,000$ N from column 1 a bolt size of M20 DIN 912 - 8.8

where

 $d_{\rm H}$ = 30 mm and $D_{\rm H}$ = 22 mm according to DIN 69 $d_{\rm m}$ = 22.4 mm according to DIN 912. Determination of the clamping length and the clamping length ratio: $l_{\rm 1}$ = 21 mm $l_{\rm 2}$ = 14 mm $l_{\rm H}$ = $l_{\rm 1}$ + $l_{\rm 2}$ = 35 mm $l_{\rm HCer}$ = 1.75.

Calculation of the contact pressure under the bolt head:

 $p = \frac{F_{mo} / 0.9}{A_{m}} \stackrel{\leq}{=} p_{m}$ $F_{mp} = 117 \cdot 10^{3} \text{ N in the case of } \mu_{m} = 0.125 \text{ from Table 1}$ $A_{m} = \frac{\pi}{4} \left[d_{m}^{2} - d_{m}^{2} \right] = 312.7 \text{ mm}^{2}$ $p = 415.7 \text{ N/mm}^{2} < p_{m} = 900 \text{ N/mm}^{2} \text{ according to Table 14.}$

<u>5.2.</u> Determination of the tightening factor α_{p} .

¢. = 1.6.

53. Determination of the required minimum clamping force.

The minimum clamping force is determined on the one hand by the required residual clamping force established in the problem:

 $F_{\text{Norm}\neq 1} = 3000 \text{ N}$

and on the other hand by the clamping force which in the case of eccentric clamping and loading directly prevents one-sided lift-off in 'the interface, namely according to Equation (78)

 $F_{Ker+2} = \frac{(a-s) u}{k_B^2 + s \cdot u_*} + F_A$

With the division

$$t = \frac{D_s + D_{res}}{i} \cdot \mathcal{T} = 36.7 \text{ mm}$$

we obtain according to [18]

$$a = s = \frac{p_{mmn}}{32} \frac{D_{1}^{2}}{F_{mmn}} \left[\frac{D_{1}}{D_{m}} + \frac{D_{1}}{D_{m}} \right]^{2} t = 29.8 \text{ mm}$$

In order to keep the amount of calculation effort as small as possible, the annulus sector is replaced by a plane-like suspension frame (see Figure 37).

With the measurements of this suspension frame we get: $y_o = 14.3 \text{ cm}$ s = 16.3 - 14.3 = 2.2 mm $A_p = 852 \text{ mm}^2$ $I_p = 89.744 + 10^3 \text{ mm}^2$ $I_p = 105.33 \text{ mm}^2$ $k_p^2 = A_p$ d = (d - s) + s = 29.8 + 2.2 = 32 mm $\alpha = 17.5 - 2 + 2.2 = 17.7 \text{ mm}$

Therefore

ŧ

 $F_{\rm Herr} = 75.8 \cdot 10^3 \,\rm N_{\odot}$

<u>S 4.</u> Determination of the preload force loss.

$$F_z = f_z \, \underline{\mathbf{0}_{k'}}_{\mathbf{0}_{m}}$$

According to Table 7, we obtain for three interfaces (including the threads) and a clamping length ratio $I_{\rm H}$ / d = 1.75

```
F_{z} = 4.5 \ \mu m.
```

According to Table 8, $\mathfrak{G}_{\mathrm{sc}}$ is determined as

 $\Phi_{\rm H} = 0.324$

(interpolated for $D_{A} \neq d_{K} = 1.167$)

and according to Table 9

 $\delta_{\rm m} = 0.437 \cdot 10^{-3} \,\mu{\rm m/N}$

(interpolated for the parameter d = 20 mm, $I_{\nu} / d = 1.75$ and $D_{\mu} / d_{\kappa} = 1.167$).

Therefore $F_z = 3.34 - 10^3$ N.

<u>S.5.</u> Determination of the force ratio.

with p = 0.5 and

(

 $\delta_{\rm C} = \delta_{\rm K} + \delta_1 + \delta_2 + \delta_{\rm C} = 0.83 \cdot 10^{-3} \,\mu{\rm m/N}$ as well as

 $\lambda = 0.14$ according to Equation (33), then

d_n = 0.22.

<u>S 6.</u> Determination of the required bolt size.

First the maximum initial prelacd is determ ined as $F_{\rm M} = \alpha_{\rm A} [F_{\rm Kerrf} + (1 - \Phi_{\rm mn})]F_{\rm Acc} + F_{\rm Z}] = 152 - 10^{3} N_{\odot}$ According to Table 1 in the case of $\mu_{\rm O} = 0.125$, M 20 DIN 912 - 10.9

is selected as the proper bolt with $F_{mp} = 164 - 10^3 \text{ N} > F_{m}$ mass

Therefore the clamping moment for $\mu_{\rm K}$ min = 0.10 (Table 5) according to Table 1 becomes $M_{\rm mp}$ = 600 Nm, and the tightening torque becomes $M_{\rm m}$ = 0.9 - $M_{\rm mp}$ = 540 Nm.

<u>S 7.</u> The exact determination of the clamping length ratio and the control of $\phi_{\rm H}$ and $\delta_{\rm P}$ can be eliminated since the bolt size does not deviate from the one originally selected.

<u>S.8.</u> Test for compliance with the maximum allowable bolt strength. According to the relation,

 Φ_{-2} · $F_{-2} \stackrel{\leq}{=} 0.1 - \sigma_{0.2} - A_{-1}$

then

 $0.22 \cdot 20.5 \cdot 10^3 < 0.1 \cdot 220 \cdot 10^3$ 4.51 · $10^3 < 22 \cdot 10^3$. This condition is fulfilled.

<u>S 9.</u> Determination of the dynamic fatigue stress of the bolt.

In the case of given eccentric loading with raised tension amplitude due to the effect of bending, the following must be calculated according to Equation (100):

$$\sigma_{\text{SAB}} = \left[1 + \left(\frac{1}{\overline{\Phi_{\text{SAB}}}} - \frac{s}{a} \right) \frac{1_{\text{K}}}{1_{\text{SAB}}} \frac{E_{\text{S}}}{E_{\text{F}}} \frac{a}{8} \frac{\pi}{A_{\text{B}}} \frac{d_{\text{S}}^{3}}{k_{\text{S}}^{2}} \right] - \frac{a}{A_{\text{S}}} \frac{(F_{\text{A}B} - F_{\text{A}B})}{A_{\text{S}}}$$

 $d_{3} = 16.93 \text{ mm}$ $A_{3} = 225 \text{ mm}^{2}$ $I_{1} = 14 \text{ mm}$ $I_{2} = 21 \text{ mm and}$ $I_{mm} = 36.42 \text{ mm from Equation (91) becomes}$ $\sigma_{300} = 59.8 \text{ N/mm}^{2}$

 $\sigma_{-} = 0.5 - \sigma_{\rm EAD} = 29.9 \text{ N/mm}^2 < \sigma_{A} = 44 \text{ N/mm}^2$ according to Table 13 on the dotted line plotted for torque controlled tightening.

<u>S 10.</u> Calculation of the bearing stress under the bolt head.

 $\sigma_{\circ,\pm}$ - A_{\odot} = 220 - 10³ N according to Table 11

 $A_{\rm P} = \mathcal{T}/4 \, [d_{\rm K}^2 - (D_{\rm B} + 2 - 0.2)^2] = 312.6 \, {\rm mm}^2$

 $p = 704 \text{ N/mm}^2 < p_{cs} = 900 \text{ N/mm}^2$.

5.6. Calculation of a Flange Joint as an Example for Bolt Calculation in the Case of Non-directly Stacked Plates

Here we are calculating a pipe flange joint NW 200/ND 40, Figure 38, under the following conditions:

	Forces	Means of Pressure
a)	free of axial force	water
ь)	with additional axial force	water
c)	free of axial force	steam (300° C)
Standard prewelded flanges of the pressure level ND 40 according to DIN 2635, which are being used here, have the following dimensions:

- $d_{2} = 200 \text{ mm}$
- d_ = 375 mm
- d∟ = 30 mm
- > = 12 holes
- $h_{\rm e}$ = 34 mm
- d_{\odot} = 240 mm
- k = 320 mm

In this case the calculations are performed to determine

---whether the sought sealing property is suited,

---which bolt force is needed for assembly.

Figure 38: Dimensions on a pipe flange joint with flanges according to DIN 2635 (bolt removed!).

These calculations are not strictly schematically feasible according to the calculation steps in Sec. 2.2.

5.6.1. Basic Conditions

As a seal, It-material is considered in all three cases. With consideration of conditions c), a good quality is selected. The following are the dimensions (Figure 38):

 $b_{\rm D} = 2 \,\mathrm{mm}$

*b*թ = 20 mm

and therefore

 $d_{\rm D}$ = 220 mm and

a⊳ = 50 mm.

The sealing characteristics are obtained according to DIN 2505 for water as

 $k_{\rm D} K_{\rm D} = 1.5 b_{\rm D} = 30 \text{ kp/mm}$ 300 N/mm;

for gases and steam at

 $k_{\rm P} = K_{\rm P} = 20 \ \sqrt{b_{\rm P}/b_{\rm P}} = 63 \ \rm kp/mm \approx 630 \ \rm N/mm$

as well as

 $k_1 = b_p = 20 \text{ mm for water or}$ $k_1 = 1.3 \ b_p = 26 \text{ mm for steam.}$ The decisive forces are obtained as ----working load $f_n = \frac{\pi d_p^2}{4} - p = 152 - 10^3 \text{ N}$ ----minimum sealing force F_p min = $\pi d_p \ k_1 \ p \ S$ F_p min = 83 - 10³ N for water or F_p min = 108 - 10³ N for steam (in the case of a safety factor S = 1.5 according to DIN 2505). ----minimum initial compression force of the sealing property: F_{∇} min = $\pi d_p \ k_0 \ K_p$

 $F_{\text{vmin}} = 207 - 10^{\pm} \text{ N}$ for water or

 $F_{V min} = 435 - 10^3 \text{ N}$ for steam.

The additional axial force is set with $F_{\perp} = 500 - 10^{\circ}$ N; the tightening factor at $\sigma_{\infty} = 1.7$ (tightening with torque wrench [see Table 17]); the embedding amount $f_{z} = 0.1$ mm for water and $f_{z} = 0.2$ mm for steam (see also DIN 2505). The friction coefficient in the threads is $\mu_{0} = 0.14$.

The bolt dimensions are consistant through the normal flange with M 27. A reduced shank bolt is chosen according to Figure 39.

5.6.2. Determination of the Elastic Resiliencies

The elastic resiliencies of the participating elements are produced as follows:

For reduced shank bolts M 27 (Figure 39) with the dimensions

- $d_{\rm H}$ = 27 mm
- $d_{\tau} = 21 \, \text{mm}$
- $I_{1} = 5 \, \text{mm}$
- $I_{2} = 55 \text{ mm}$

the following cross sections are obtained

$$A_{N} = A_{1} = \frac{k_{L} - 2\pi}{4} = 573 \text{ mm}^{-2}$$

 $A_{\odot} = 459 \text{ mm}^2$ (tension cross section) and accordingly

$$\delta_{\Xi} = \frac{1}{E} \left(\frac{I_1}{A_1} + \frac{I_2}{A_2} + \frac{I_{\Xi}}{A_{\Xi}} + \frac{2 - 0.4 \ d}{A_N} \right)$$

$$\delta_{\Xi} = 1.10 - 10^{-6} \ \text{mm/N for } 20^{-6} \ \text{C or}$$

$$\delta_{\Xi} = 1.10 - \frac{2.1}{1.8} - 10^{-6} \ \text{mm/N} = 1.28 - 10^{-6} \ \text{mm/N for } 300^{-6} \ \text{C}.$$

Figure 39: Dimensions of the reduced shank bolt for the pape flange joint.

For the flange, the resistance moment with Equation (40) becomes $H = \frac{1}{12} \begin{pmatrix} d_2 + s_F \end{pmatrix} s_F^2 + \frac{1}{12} \begin{pmatrix} d_2 - d_2 - 2 & d_2 \end{pmatrix} h_F^2$

= 19.6 - 10[∞] mm[∞];

the inverse resilience with Equation (38) and $h_{\rm P}=72$ mm (Figure

38) becomes

$$P = \frac{d_{-} + d_{-}}{4 \pi \epsilon h_{-} W} = 0.157 - 10^{-7} 1/Nmm$$

and where $e_{R} = \frac{k - d_2 - s}{2} = 56.85$ mm, the resilience for 20° C

becomes

 $\delta_1 = \gamma \ a_D^2 = 0.393 - 10^{-4} \ mm/N$ $\delta_2 = \gamma \ a_D^2 \ a_R = 0.447 - 10^{-4} \ mm/N$ $\delta_3 = \gamma \ (a_R - a_D) \ a_D = 0.054 - 10^{-4} \ mm/N$

and for 300° C correspondingly

 $\delta_1 = 0.458 \cdot 10^{-4} \text{ mm/N}$ $\delta_2 = 0.521 \cdot 10^{-4} \text{ mm/N}$ $\delta_3 = 0.063 \cdot 10^{-4} \text{ mm/N}.$

The resilience of the seal is determined with Equation (31), whereby the elastic deformation (shortening) of the flange plates is neglected. Young's modulus of It-material is approximated in the area of interest as the secant modulus as

 $\mathcal{E}_{\rm D}$ = 1300 N/mm² for 20° C and

 $E_{\rm D} = 2200 \, \text{N/mm}^2$ for 300°.

The following equations are thus obtained:

$$\delta_{\mu} = \frac{b_{D}}{E_{D} \pi} = 0.111 - 10^{-4} \text{ mm/N for } 20^{9} \text{ C}$$

and

 $\delta_{\rm P} = 0.111 + 10^{-6} + \frac{1.3}{2.2} = 0.066 + 10^{-6} \text{ mm/N} \text{ for } 300^{\circ} \text{ C}$ 2.2 5.6.3. Determination of the Force Ratio and of the Force Loss due to Embedding According to Equation (106) the following are determined for 20° C $\Phi_{\rm F1} = \frac{\delta_{\rm P} - 2.6_3}{\delta_{\rm S} - 2.6_3} = 0.003 \text{ and}$

 $1 - \Phi_{r_1} = 1 - 0.003 = 0.997$

as well as for 300° C

 $\bar{\Phi}_{F1} = -0.055$ and $1 - \bar{\Phi}_{F1} = 1.055$.

If, for operation at 20°, according to Equation (47), instead of $\delta_{\rm m}$ + $\delta_{\rm m}$ in the demoninator we put in

 $\delta_{\rm m}/m + 2 \,\delta_1 + \delta_{\rm m} = 0.989 - 10^{-6} \,\rm{mm/N}$

then we can determine the force loss due to embedding as

$$F_z = \frac{f_z}{\delta_s/\pi + 2 \delta_1 + \delta_r} = \frac{0.1 \text{ mm}}{0.989 \cdot 10^{-2} \text{ mm/N}} = 101 \cdot 10^3 \text{ N}$$

Since the resiliencies change at 300°, the graphic_determination is

5.6.4. Determination of the Maximum Bolt Preload

For the conditions a) the following is obtained according to Equation (9)

 $F_{\rm mmax} = \alpha_{\rm A} [F_{\rm Dmin} + (1 - \bar{\sigma}_{\rm min}) F_{\rm A} + F_{\rm Z}] = 570 - 10^3 N_{\star}$

We arrive at the same result if we draw the joint diagram according to Figure 40. From Point P onward, the increase of the seal characteristic is plotted with $\delta_{\rm P} = 0.111 - 10^{-6}$ mm/N. Point H lies in the level of $f_{\rm D}$ min = 83 - 10°; vertically over it, in the distance $F_{\rm A} =$ $152 - 10^{\circ}$ N, lies Point K. For any force $F_{\rm V}^{*}$ (Point V^{*})—but here taken logically at 200 - 10°—we calculate for complete unloading of the seal Point M^{*} with $F_{\rm A}^{*} = F_{\rm V}^{*}/(1 - \Phi_{\rm WI}) = 201 - 10^{\circ}$ N. If we draw the parallels to Point V^{*}M^{*} through Point K then we get Point V of the diagram as a section with the seal characteristic. The rise of line SV is produced from the resiliencies of the clamping parts $\delta_{\rm B}/m + 2 \delta_1 =$ $=0.878 - 10^{-6}$ mm/M, and thus Point S.

Figure 40: Joint diagram for conditions a).

For consideration of the embedding amount parallels are drawn through Point D to SV and PV which include the line $f_z = 0.1$ mm on the new base line S'V' of the clamping diagram. With this we can read the minimum preload $F_{\rm m min} \approx 335 - 10^3$ N (Line O'V'). From this follows, as calculated

 $F_{\rm mmen} = \alpha_{\rm e} F_{\rm mmen} = 1.7 \cdot 335 \cdot 10^3 = 570 \cdot 10^3 \, \text{N}$ (as above).

In the case of twelve bolts, each bolt is loaded with 570 - $10^3/12$ = 48 - 10^3 N.

Page 114

According to Table 2 we get a clamping force of $F_{mp} = 159 - 10^3$ for a reduced shank bolt M 27 - 8.8. The bolt size is therefore sufficient.

For the conditions b) the following is produced

 $F_{\text{max}} = \sigma_{\text{A}} [F_{\text{D}} m_{\text{in}} + (1 - \Phi_{\text{F1}}) (F_{\text{A}} + F_{\text{L}}) + F_{\text{Z}}]$ = 1.7 - 10³ [83 + 0.997 (152 + 500) + 101] N $F_{\text{m}} m_{\text{max}} = 1418 - 10^3 \text{ N}.$

If we plot the joint diagram in the same way as for conditions a), Figure 41, we reach the same result. The load per bolt at 1418 \cdot 10³/12 = 118 \cdot 10³ N lies beneath the dependable limit of 143 \cdot 10³ N for the quality 8.8.

The calculation of the value $f_{m,max}$ in the case of conditions c) is made difficult due to the various resiliencies for 20° C and 300° C so that a graphic determination is simpler. The joint diagram, Figure 42, is designed with the resiliencies for 300° C in the same way as Figures 40 and 41 to Point S'. Corresponding to the higher embedding amount as a result of the creepage of the seal, Point S' lies rather far to the left of S (Note: Depending upon seal condition, there can be even essentially higher embedding amounts, e.g., 0.5 mm.) If we put in lines through S' and P' with rises corresponding to the resiliencies for 20-C, then we get Point V" from which the minimum preload $F_{V,min}$ = 470 - 10^3 N is produced. In operation it falls to $440 \cdot 10^3$ N (Point K) and climbs in the cold state (pressureless) again to the value F_{v} min = 470 - 10^3 N (Point V"). In the case of each additional loading the bolt strength alternates between Points K and V", thus with an amplitude of $30 - 10^3/2 = 15 - 10^3$ N/mm². The maximum loading per bolt is produced at 1.7 \cdot 470 \cdot 10³/12 = 67 \cdot 10³ N.

Ĺ

(

5.6.5. Fatique Strength Testing

While under the conditions a) and b) the oscillation range (the difference of the forces at Points K and V in the Figures calculated as

 $F_{SA} = \Phi_{F1} F_A$ or $F_{SA} = \Phi_{F1} (F_A + F_L)$ at 460 N or 1960 N) is slight, and the fatigue strength is not considered, this range is higher in the case of conditions c) with 30 - 10^{\odot} . The amplitude of the nominal tension is obtained as

 $\sigma_{\rm m} = F_{\rm max}/2 \ m \ A_{\rm V} = 30 \ \cdot \ 10^3/2 \ \cdot \ 12 \ \cdot \ 347 \ = \ 3.6 \ \rm N/mm^2.$

Generally even this will cause no difficulties as long as no additional forces occur. The bending tension of the bolts connected with the tilt of the flange is nevertheless hardly noticable in the oscillation amplitude since the tilt hardly changes with the pressure. 5.6.6. Calculation of the Seal Characteristic

The force $F_{V,min} = 207 - 10^3$ N (a and b) or $F_{V,min} = 435 - 10^3$ N necessary for the deformation of the seal is produced in all cases by the minimum preload forces.

Additionally, the strength of the flanges must be checked since these would cause stronger embedding due to plastic deformation in the case of overloading. This occurs with the help of the relation

σ = M/W' ≈ Fm max 2p/(2 π 1.5 #)=

= Fm max - 0.27 - 103 N/mm2.

The greatest value is obtained for the conditions b) as

 $\sigma_{5} = 1418 - 10^{3}$ N - 0.27 - 10^{-3} $1/mm^{2} = 383 - N/mm^{2}$... so that a flange material with an elastic limit of 1.5 - 383 N/mm² = 574 N/mm² is necessary.

References

[1] Junker, G. and D. Blume: New Methods for a Systematic Calculation of Bolted Joints (German) Düsseldorf: Triltsch-Verlag, 1965.
[2] Illgner, K.-H.: Design of Bolted Joints for Dynamic Stress.
(German) Masch.-Markt 70 (1964) No. 78.

[3] Boenick, U: Investigations of Bolted Joints. (German) Doctoral Dissertation, TU Berlin 1966.

[4] Neber, H.: Static and Dynamic Investigations of Eccentrically Loaded Joints. (German) Doctoral Dissertation, Berlin 1966.
[5] Niegang, H., K.-H. Illgner and K. H. Beelich: Concerning the Reduction of the Preload in Bolted Joints due to Embedding Procedures. (German) Werkst. u. Betr. 98 (1965) pp. 823-27.

[6] Junker, G.: Mass Examination Concerning Tightaning in Bolted Joints with Motorized Wrenches. (German) Beilage Draht-Welt 36 (1970) Heft 3.

[7] Junker, G.: Contact Pressure under Bolt Heads. (German) Masch.-Markt (1961) No. 38, pp. 29-39.

[8] Birger, J. A.: The Shortening of Bolted Plates or Flanges. (Russian) Russian Engng. J. (1961) No. 5, pp. 35-38. Summary in: Konstruktion 15 (1963) No. 4.

[9] Fritsche, G.: Principles of a More Accurate Calculation of Statically and Dynamically Loaded Bolted Joints. (German) Doctoral Dissertation, TU Berlin 1962.

[10] Rydschenko, V. M. and V. A. Tkachenko: The Maximum Bolt Force in a Prestressed Joint. (Russian) Russian Engng. J. (1962) No. 8, pp. 11-13. Summary in: Konstruktion 15 (1963) No. 11, p. 466.

[11] Vitkup, E. B.: The Deformation of Bolted Plates. (Russian)
Russian Engng. J. (1961) No. 5, pp. 39-40. Summary in: Konstruktion 15
(1963) No. 4, p. 161.

[12] Weiss, H. and F. Wallner: The High-strength Structural Steel Bolt under Tension Loading. (German) Stahlbau-Rundschau (1963) No. 24, pp. 15-22.

[13] Fernlund, J.: Pressure Distribution Between the Sealing Faces of Bolted Flanges. (German) Konstruktion 22 (1970) Heft 6, pp. 218 ff. [14] Agatonovic, P.: Behavior of Bolted Joints under Combined Working Loads. (German) Doctoral Dissertation, TU Berlin 1973.

[15] Dreger, H.: Simplified Calculation of Preloaded Bolts. (German)
Konstruktion (1965) Heft 8, pp. 320-25.

[16] Dreger, H.: Embedding Amounts and their Consideration in the Case of Simplified Calculation of Preloaded Bolts. (German) Konstruktion (1955) Heft 5, pp. 209-12.

[17] Benz, W.: High-strength Bolts and Bolted Joints in the Construction of Motors. (German) Konstruktion (1955) Heft 5, pp. 175-84.

[18] Beyer, Statics in Construction with Reinforced Concrete. (German) Berlin/Heidelberg: Springer-Verlag 1956, pp. 654-55. [19] Lang, O. R.: Transmissions in High-speed Internal Combustion Engines. (German) Konstruktionsbücher No. 22, Berlin/Heidelberg: Springer-Verlag 1966.

[20] The Calculat on of the Force Fit of Plain Bearing Races. (German) MTZ 22 (1921) Heft 2 and 4.

[21] Junker, G.: Friction, Disturbance Factor in the Case of Bolt Assembly. (German) Verbindungstechnik 6 (1974) Heft 11.

[22] Dreger, H.: Determination of the Basic Quantities for the Calculation of High-duty Bolted Joints According to the Guideline VDI 2230. (German) Drahtwelt 62 (1976) Heft 7, pp. 291-94. [23] Dreger, H.: Commentaries for VDI-Guideline 2230 and for the Determination of the Basic Quantities for the Calculation of High-duty Bolted Joints. (German) Drahtwelt 62 (1976) Hefts 8, 9, 10, pp. 331-36; 391-95; 433-35.

[24] Dreger, H.: Statics of Multi-bolted Joints. (German) VDI-Bericht 220. Düsseldorf: VDI-Verlag 1974, pp. 55-67.

(

CALCULATION TABLES

(Translator's Note: The following pages represent <u>keys</u> to the tables found in this guideline and should be used <u>with</u> them. All commas between numerals are to be read as decimals points, e.g., 14,56 =14.56.)

Page 121 Table 1: Clamping Forces dap and Tightening Torque Map for Full Shank Bolts with Standard Metric Thread According to DIN 13, p. 13. Column 1 = Diameter 2 = Class.. $3 = Clamping forces F_{eq}$ in N for μ_{o} 11 4 = Tightening torque $M_{\rm mo}$ in Nm for $\mu_{\rm K}$ <u>Table 2</u>: Clamping Forces f_{mp} and Tightening Torque M_{mp} for Reduced Shank Bolts with Standard Metric Thread According to DIN 13, p. 13. Column 1 = Diameter " " 2 = Class " $3 = \text{Clamping forces } F_{\text{mp}}$ in N for μ_{B} 24 4 = Tightening torque M_{mp} in Nm for μ_{mp} Table 3: Clamping Forces Fup and Tightening Torque for Full Shank Bolts with Fine Metric Thread According to DIN 13, p. 13. Column 1 = Diameter " 2 = Class " $3 = \text{Clamping forces } F_{mp}$ in N for μ_{σ} 11 4 = Tightening torque M_{mp} in Nm for μ_{K} <u>Table 4</u>: Clamping Forces $F_{=p}$ and Tightening Torque $M_{=p}$ for Reduced

Shank

14 J.

Bolts with Fine Metric Thread According to DIN 13, p. 13.

```
Column 1 = Diameter
```

- " 2 = Class
- " $3 = Clamping forces F_{ab}$ in N for μ_{ab}
- " 4 = Tightening torque $N_{=p}$ in Nm for μ_{tc}

Table 5: Friction Coefficients for Various Surface and Lubricant Conditions.* [Main column I] Surface I -- a) $\mu_{\rm HC}$: bolt head or nut b) μ_{0} : bolt thread [Minor columns 1-3] Steel, darkened or zinc phosphated Column 1 = pressed, rolled " 2 = turned, cut" 3 = ground[Minor columns 4-5] Column 4 = Steel, cadmium-plated 6 μ m " 5 = ", zinc-plated $6 \mu m$ [Words running vertically in left margin] leicht geölt = lightly oiled trocken = dry mit Kleber = a ch adhesi... EMajor column II] Surface II -- toward material toward nut thread . [Levels in descending order] Level 1 = Steel, rolled

planed, milled, turned, cut ground Level 2 = Gray cast iron, planed, milled, turned, cut Black malleable cast iron, ground Level 3 = Steel, cadmium-plated 6 μ m ... " internal thread zinc-plated 6 μ m internal thread (ground, rolled), phosphated (machined), phosphated Level 4 = Al-Mg alloys Level 5 = Steel, cadmium-plated 6 μ m +7 internal thread 6 µm zinc-plated 68 H internal thread Level 6 = Steel, gray cast iron, black malleable case iron

cut

* The friction coefficient $\mu_{\kappa_{min}}$ for the determination of the appropriate clamping moment M_{mp} ($M_{R} \approx 0.9 M_{max}$) and the friction coefficient $\mu_{0,min}$ for the determination of the clamping force F_{mp} can be found in Tables 1 to 4 (or μ_{0mm} min if $\mu = \mu_{\kappa_{r}}$). ** for synthetic lubricants and micro-encapsulated adhesives

Page 123

Table 6: Estimation of the Diameter Range of Bolts. [Boxed chart in upper left] Column 1 = Force in N Columns 2-4 = Nominal diameter in mm Strength class [Directly below boxed chart] Example: A joint is dynamically and eccentrically loaded by the axial force $F_{\rm A}$ = 8500 N. The bolt with the strength class 12.9 should be installed with a torque wrench. A 10,000 N is the next-greatest force to FA in column 1. B Two steps for an "eccentric and dynamic axial force" lead to $F_{m,min}$ = 25,000 N. C One step for "tightening with a torque wrench" leads to F_{m} max = 40,000 D For $F_{m,max}$ = 40,000 N we find in column 2 (Strength class 12.9): M 10. [Top right] A From column 1 choose the next-greatest force to the working load F_A being applied on the joint. B The required minimum preload Fm min is produced by proceeding further from this number at: Four steps for static or dynamic transverse force or Two steps for dynamically and eccentrically acting axial force or One step for dynamically and concentrically or statically and

eccentrically acting working load

or

No steps for statically and concentrically acting force

C The required maximum preload F_{m} man is produced by proceeding from the force F_{m} min at:

Two steps for tightening the bolt with a simple wrench which is set over the tightening torque--or

One step for tightening with a torque wrench or precision wrench which is set and determined by means of dynamic torque measuring or length measuring--or

No steps for tightening over angle control into the elastic area or by means of elastic limit-controlled tightening directed by computer.

D The required bolt dimension in mm for the selected strength class is in columns 1 to 4 next to the number located.

<u>Table 7</u>: Optimum Values for the Embedding Amount per Interface for Temporally Alternating Working Loads. (For restrictions see Sec. 4.4.). The thread counts as an interface!

[Top left]

Number of interfaces (including thread)

[Top right]

Embedding amount in μm for the clamping length $I_{\rm H}/d$ =

Table 8: Force Ratio Om. [Too left] Full shank bolts [Top right] Reduced shank bolts [Vertical in left margin] Force ratio @ [Vertical in chart] M12 with $I_{\rm HC}$ = 42 mm (see Example 5.1, S 4) [Vertical under chart] Al-Lq = Aluminum alloy= Gray cast iron GG Stahl = Steel Werkstoff der verspannten Teile = Material of clamped parts [Centered under chart] Clamping length ratio I_{κ}/d [arrow] Presented function derived from Equations 25, 27, 29, 30, 31, 53: $\log (1 - 1) + \log \frac{E_{\pi}}{E_{\pi}} - \log (1.3) =$ (only for reduced shank bolts) $\log \left\{ \left[1.2 + \frac{C}{2} (0.31 \frac{1_{\text{K}}}{d} + \frac{1_{\text{K}}^2}{100} \right] (1 + 1.25 \frac{d}{1_{\text{K}}} \right\}$ with C = $(D_{A} - 1)$ and the mean values in the dimension area M4 to M30 d_{K} (standard thread) by $d_{Km} = 1.56$ d; $D_{Bm} = 1.11$ d; $d_{Zm} = 0.19$ d; $d_{Zm} =$ 0.83 d; and 1.0 free thread length.

Table 9: Resilience of Clamped Parts. EVertical in left margin] Resilience $\delta_{\rm P}$ in 10^{-5} $\mu_{\rm R}/N_{\star}$ [Diagonal in chart] Thread diameter d = 30 mm (s.Beispiel 5.1 R4) = (see Example 5.1. 5 4)EVertical in right margin] Clamping ratio In- / d [Vertical below chart] Al-Lg = Aluminum alloyGG = Gray cast iron Stahl = Steel [Horizontal below chart] Sleeve \longrightarrow Plate Presented functions derived from Equations 29, 30, 31: $\log \delta_{-} = -(\log d + \log E_{-} + \log y)$ with $y = \frac{\pi}{4} (1.2 \frac{d}{l_{K}} + C \frac{0.31}{2} + C \frac{l_{K}}{200 d})$ and $C = \frac{(D_{A} - 1)}{d_{K}}$ and from mean values in the dimension area M4 to M30 by d_{κ_m} = 1.56 d and $D_{pm} = 1.11 \, d.$

.

Table 10: Length Ratio for the Interface of the Eccentric, Clamped and Non-loaded Joint.

<u>Table 11</u>: Pitch, Tension Cross Section, Core Cross Section and Forces $F_{0,2}$ for Full Shank Bolts with Standard and Fine Metric Thread According to DIN 13, p. 13.

Column 1 = Diameter

- " 2 = Pitch p mm
- " 3 = Stress area A_{s mm}=
- " 4 = Core cross section A₃ mm²

Columns 5-7 = Force at the minimum elastic limit $F_{O,2} = \sigma_{O,2} A_{O}$ with strength class according to DIN/ISO 898. Metrisches Regelgewinde = Standard metric thread

" Feingewinde = Fine " '

<u>Table 12</u>: Pitch, Reduced Shank Cross Section, Core Cross Section and Forces $f_{0,2}$ for Reduced Shank Bolts with Standard and Fine Metric Thread According to DIN 13, p. 13.

Column 1 = Diameter

_ _ _

- " 2 = Pitch p mm
- " 3 = Reduced shank diameter d_{τ} h 13 (0.9 d_{π}) mm

* 4 = Reduced shank cross section $A_{T_{min}} = A_{m} m^2$

Columns 5-7 = Force of the minimum elastic limit $F_{0,2} = \sigma_{0,2} A_{B}$ with

strength class according to DIN/ISO 898.

Metrisches Regelgewinde = Standard metric thread

" Feingewinde = Fine " "

Table 13:Optimum Values for the Fatigue Strength of Annealed Bolts ofthe Strength Classes 8.8, 10.9, 12.9 (Haigh Diagram).[Vertical margin]Fatigue strength $\pm \sigma_A$ [Horizontal below chart]Relative mean tension $\sigma_{\sigma_{0,2}}$ [In chart referring to dotted line on right]Preload in the case of elastic limit or angle of rotation-controlledtightening procedures.[In chart referring to dotted line on left]Upper limit of preload for torque-controlled tightening[On diagonal lines in descending order]M4 to M8; M10 to M16; M18 to M30[In box in lower left corner]For rolled bolts we can calculate with appox. doubled values.

Table 14:Allowable Bearing Stress p_{Θ} in N/mm² for Compressed Parts ofVarious Materials.Werkstoff= MaterialAnziehen= Tightaning (procedure)motorisch/von Hand= motorized/by hand

GG 25 = gray cast iron 25

{

(

C

Table 15: Factors which Influence the Fatigue Strength in the Positive Sense.

1. Clamping Ratio.

.

1.1. Expanding the lengthening and bending elasticity by: reduced shank bolts,

long bolts,

high strength bolts,

through-bolts with nuts,

attaching a sleeve,

reducing Young's modulus.

1.2. Reinforcement of the clamped parts by:

design measures,

using materials with great elasticity as well as by separating

bearing and sealing functions.

1.3. Avoiding bending by:

reducing the eccentricity,

raising the preload.

1.4 Maintaining the residual clamping force by: avoiding embedding,

avoiding conditions which cause unbolting.

2. Bolting Conditions.

2.1. Equal distribution of tension by: bolt material with low elasticity, suited nut types, suited thread profiles, pitch differential between bolt and nut threads, high preload,

elastic thread liner.

2.2. Thread tolerances

Ĺ

Ę

(sufficient play in thread).

3. Fatigue Strength of the Bolt.

3.1. Shape influences at the head and shaft caused by: increasing the head tensile,

large radii,

threading in the bolt hole.

3.2. Shape influences in the thread caused by:

large radii,

heel thread,

soft end thread.

4. Materials and Production.

4.1. Materials:

great durability,

high strength,

avoiding de- and recarburization as well as scaling ,

uninterrupted thread flow.

4.2. Surface improvement by: strain-hardening, burnishing and polishing, applying internal pressure, avoiding electropolishing.

5. Chemical Surface Conditions.

5.1. Avoiding corrosion.

(However, unfavorable influence due to galvanized protective layers).

Table 16:Recommended Minimum Engagement Depths for Blind-hole Thread.Schraubenfestigkeitsklasse = bolt strength classGewindefeinheit d/P= fineness of thread d/PGG-22= gray cast iron 22

<u>Table 17</u>: Optimum Values for the Tightening Factor α_{p} . Anziehfaktor α_{p} = tightening factor α_{p} Anziehverfahren = tightening procedures Bemerkungen = comments

(1) Elastic limit-controlled tightening (powered).

(1) Angle of rotation-controlled tightening (powered or manual). [Comments] The preload scattering is overwhelmingly determined by the scattering of the elastic limit in a given bolt lot. The bolts here are dimensioned for $F_{m,min}$. The tightening factor α_n therefore drops out for these tightening methods. The values in the parentheses serve to compare the tightening precision with the following procedures. 1.2 Tightening with length measurements of the suited bolts. [Comments] Complicated procedure; only applicable in very restricted cases.

1.4 to 1.6 Torque-controlled tightening with a torque wrench or a precision wrench with dynamic torque measuring. Experimental determination of the specified tightening torque on the original joint part, e.g., by lengthening measurement of the bolt.

[Specific comments for these methods] Lower values for: Page 133

---electronic torque limitation during assembly in the case of precision wrenches.

1.6 to 1.8 Torque-controlled tightening with a torque wrench or a precision wrench with dynamic torque measuring. Determination of the specified tightening torque by estimation of the friction coefficient (surface and lubricant conditions).

[Specific comments for these methods]

Lower values for:

---precise torque wrench (e.g., with a meter).

---uniform tightening.

---precision wrench.

Higher values for:

-----torque wrenches with signal device or which bend.

1.7 to 2.5 Torque-controlled tightening with wrench.

Adjustment of the wrench with tightening torque which is formed from the specified tighening torque (for estimated friction coefficient) and from an extra allowance.

[Specific comments for this method]

Lower values for:

----great number of checking attempts (tightening torque).

2.5 to 4 Impulse-controlled tightening with impact wrenches. Adjustment of the wrench over the tightening torque--as above.

[Specific comments on this method] Lower values for: ----great number of adjustment attempts (tightening torque). ----impulse transmission which is free from play. [General comments for all methods from 1.4 to 4] • Lower values for: ----slight angle of rotation, i.e., relatively stiff joint. ----relatively soft opposing plane. ---opposing planes which are not prone to binding, e.g., phosphated. Higher values for: ----high angle of rotation, i.e., relatively resilient joints as well as fine thread. ---great hardness of opposing plane connected with a rough surface. ---deviations in shape.

· · · · ·

Table 18: K Factors for the Quick Calculation of the Tightening Torque for μ_{0} and μ_{K} . [Dircetly above numbers in chart] Head friction coefficient μ_{K} . [Vertical in left margin] Thread friction coefficient μ_{0} . [At bottom of chart] Maximum tightening torque M_{0} men = $K - F_{m} - d$ in Nm. [Below chart] F_{m} in N is the desired preload if 90% utilization of the elastic limit is predicted. Insert F_{mp} from Tables 1 to 4. d in m is the nominal diameter of the bolt. R = standard thread, F = fine thread.

and the second s

ہ کہ" انہ ہے

Abm.	Klasse	Scennkr	ifte <i>F_</i> in	N für au	-			1	Spenn	momer	te M.	in Nm	für ster 4		
		0,08	0,10	0.125	0,15	0,16	0,20	0,25	80.0	0,10	0.125	0,14	0_16	0 <i>,2</i> 0	0,25
	8.8	4400	4250	~700	3900	3750	3450	3100	2,4	2,6	2,9	3,1	33	3,8	4,4
M4	10.9	6200	5900	700 ت	5 500	5300	4850	4350	3.4	3.7	4,1	4,4	4.6	5.3	6,2
	12.9	7400	7100	6800	6600	6300	5800	5200	4,1	4,4	4,9	5,2	5,6	6,4	7,4
	8.8	7200	6900	6600	6400	6100	5600	5100	4,8	5.3	5,9	6,2	6.7	7.6	8.7
M 5	10.9	10100	9700	9300	9000	8600	7900	7100	6,7	7,5	8.3	8,7	9,4	10,7	12,2
	12.9	12100	11700	11100	10800	10300	9500	8600	8,1	8,9	10,0	10,5	5.11	13,0	14,5
	8.8	10100	9700	9300	9000	8600	7900	7100	8.1	8,9	9,9	10,5	11,2	13,0	14,5
MG	10.9	14200	13700	13000	12700	12100	11200	10000	11.4	12.5	14,0	15.0	16,0	71.5	20,5
	14.9	17000	10400	15700	15200	.= 000	13400	12100	6.61	.3.0	10,0	.7,5	19,0		23,0
	8.8	18600	17900	17000	16500	15900	14 600	13100	19	21	24	25	27	31	36
M 8	10.9	26000	25000	24000	23200	22300	20 500	18500	28	30	34	36	38	44	50
<u> </u>	129	31 500	30000	29000	28000	27000	24600	22200	33	36	40 [43	45	52	60
	8.8	29500	28 500	27000	26500	25 500	23200	20900	39	42	47	50	53	61	70
M 10	10.9	41 500	40 000	38000	37300	35500	32 500	29 500	55	60	66	70	75	85	98
	12.9	50000	48000	46000	44 500	42500	39000	35 500	65	72	79	84	90	103	118
	8.8	43000	41 500	39 500	38500	37 000	3=000	30 500	67	74	82	86	93	105	121
M 12	10.9	61 000	58000	56000	54000	52000	47 500	43000	95	104	115	121	130	150	170
	12.9	73000	70000	67000	65000	62000	57000	52000	114	124	140	145	155	180	205
	8.8	59000	57000	54000	53000	50000	46500	42000	107	117	130	135	145	165	190
M 14	10.9	83000	80000	76000	74000	71 000	65000	59 000	150	165	180	195	205	235	270
L	12.9	99000	96000	91 000	89000	85000	78000	71000	180	195	220	230	250	280	320
	8.8	81 000	78000	75000	73000	70000	64000	58000	165	180	200	215	230	260	300
M 16	10.9	174000	110000	105000	102000	98000	90000	82000	235	260	280	300	320	370	420
	12.9	137000	132000	126000	123000	118000	103000	98000	280	310	340	360	(390	440	510
	8.8	98000	95000	91 000	88.000	84000	78000	70000	230	250	280	290	310	360	410
M 18	10.9	138000	134000	127000	124000	119000	109000	98000	320	350	390	1 410	440	500	580
	12.9	166000	160000	153000	148000	142000	131000	118000	390	420	470	490	530	600	690
	8.8	127000	122000	117000	113000	109000	100000	90000	320	350	390	410	440	510	580
M 20	10.9	178000	172000	164000	160,000	153000	141000	127000	450	500	550	580	630	710	820
L	12.9	214000	207000	197000	192000	184000	169000	153000		500	660	700	750	850	980
	8.8	158000	153000	146000	142000	136000	125000	113000	440	480	530	560	600	690	790
M 22	10.9	222000	215000	205000	199000	191000	176000	159000	620	680	750	790	850	970	1110
L	12.9	285,000	260000	245000	239000	230000	211000	191000	740	810	900	950	1020	1160	1350
1	8.8	183000	176000	168000	164000	157000	145000	130000	560	610	670	710	770	870	1000
M 24	10.9	255000	248000	237000	230000	221 000	203000	183000	780	860	950	1000	1 1080	1220	1400
	12.9	310000	300000	285000	275000	265000	244000	220000	940	1030	1140	1200	1300	1450	1700
1	8.8	239000	232000	221 000	215000	206000	190000	172000	820	890	990	1050	1130	1300	1450
M 27	10.9	335000	325000	310000	300 000	290 000	265000	241 000	1150	1250	1400	1450	1600	1800	2050
	12.9	405000	390000	375000	365000	350 000	320 000	290000	1400	1500	1650	1750	1900	2150	2500
	8.8	290000	280000	270000	260000	250 000	231 000	209000	1110	1210	1350	1400	1 1550	1750	2000
M 30	10.9	410000	395000	380000	370000	355000	325000	295000	1550	1700	1900	2000	2150	2450	2800
ł	12.9	490000	475000	455000	440000	425000	390 000	350000	1850	2050	2250	2400	2600	2950	3400
L	•	1	t	•		·	·	•		•			1		

Tafel 1. Spannkräfte Fap und Spannmomente Map für Schaftschrauben mit metrischem Regelgewinde nach DIN 13, BL13

.

.

۲

.

•

Abm	Klasse	Scenakri	tte F., in	N für u-	· · · · · ·				Spens	mome	te M	in Nm 1	in the s		
		0.08	0.10	3,125	0,14	0,16	0,20	6,25	0.08	0,10	0,125	0,14	0,16	0.20	0,25
	8.8	3050	2950	2800	2700	2600	2350	2100	1,65	1,8 26	20	2,15	23	2.5	3,0
N 4	129	5200	4950	4700	4550	4350	4000	2950	28	31	34	3.6	30	3,1	4,2
	8.8	5100	4900	4650	4500	4300	3950	3550	3,4	3,7	4,1	4,4	4,7	5,4	6,2
M5	10.9	7200	6900	6500	6300	6100	5500	4950	4,8	5.2	5,8	6,2	6,6	7,6	8,7
	129	8600	8300	7800	7600	7300	6700	6000	5,7	6,2	6,9	7,4	7.9	9,1	10,5
1	8.8	7200	8900	6600	6400	6100	5600	5000	5,8	6,3	7,0	7,4	8,0	9,1	10,4
MG	10.9	10100	9700	9200	9000	8600	7800	7000	8,2	8,9	9,8	10,4	11,2	13,0	14,5
}	129	12220	11700	11100	10700	10300	9400	8400	9,8	10,6	11,8	12,5	13,5	15,5	17,5
	8.8	13200	12700	12100	11700	11 200	10200	9200	14.0	15.5	17.0	18.0	19,5	22.0	25.0
M 8	10.9	18600	17900	17000	16400	15700	14400	12900	19,5	21,5	24.0	25.0	27,0	31,0	36,0
	12.9	22300	21 500	20400	19700	18900	17300	15500	23.5	26,0	29,0	30,0	33.0	37,0	43.0
	88	21000	20200	19200	18600	17800	16300	14600	27	30	23	35	38	43	49
M 10	10.9	29500	28500	27000	26000	25000	22900	20600	39	42	47	50	53	60	70
ł	12.9	35500	34000	32500	31 500	30000	27 500	24700	46	51	56	60	64	73	84
	88	31 500	30000	28500	28000	26500	24400	21900	49	53	59	63	67	76	88
M 12	10.9	44.000	42500	40500	39000	37 500	34500	31000	69	75	83	83	95	108	124
1	12.9	53000	51 000	48500	47000	45000	41 000	37000	83	90	100	106	114	130	150
	88	44000	42000	40000	39000	37000	34000	30500	70	87	96	101	109	124	140
M 14	10.9	62000	59000	56000	55000	52000	48000	43000	111	122	135	145	155	175	200
1	12.9	74000	71 000	68000	55000	63000	58000	52000	135	145	160	170	185	210	240
	8.8	58000	56000	53000	51 000	49000	45000	40500	117	1 130	140	150	1 160	185	210
M 16	10.9	81 000	78000	74000	72000	69000	63000	57000	165	180	200	210	230	260	300
	129	98000	94000	89000	87 000	83000	76000	68000	200	215	240	250	270	310	360
<u></u>	8.8	73000	70000	66000	64000	62000	56000	51000	165	185	205	215	230	260	300
** 18	10.9	102000	98000	93000	91 000	87000	79000	71000	235	260	280	300	320	370	420
ļ	129	123000	118000	112000	109000	104000	95000	86000	280	1 310	340	360	390	440	510
	8.8	91 000	87000	83000	80000	77000	70000	63000	230	250	280	290	320	360	410
M 20	10.9	127000	123000	117000	113000	108000	99000	89000	320	350	390	410	440	500	580
	12.9	153000	147000	140000	136000	130000	119000	107000	390	420	470	500	530	600	700
	8.8	117000	113000	107000	104000	100000	92000	82000	320	350	390	420	450	510	580
M 22	10.9	165000	159000	151000	147000	140000	129000	116000	450	500	550	580	630	710	820
	12.9	198000	191 000	181 000	176000	168000	154000	139000	550	600	660	700	750	860	990
	8.8	138000	133000	127000	123000	118000	108000	97000	420	460	510	540	SBO	6:0	750
M 24	10.9	194000	187000	178000	172000	165000	152000	136000	590	640	710	750	810	920	1060
	12.9	233000	224000	213000	207000	198000	182000	163000	710	770	860	910	970	1100	1250
	8.8	179000	172000	164000	150000	157000	140000	176000	610		770	700	940	060	1 1000
M 27	10.9	250000	243000	231000	224000	215000	197000	177 000	850	930	1030	1090	1170	1350	1550
1	12.9	300000	290.000	275000	270000	255000	236000	212000	1020	1120	1240	1300	1400	1600	1850
	100	710000	200000	100000	100000	197000	167000	10000	1	000	000	1 1040		1	
M 30	10.9	300000	290.000	275000	265000	255000	235000	210000	1140	1 1240	1400	1 1450	1550	1250	2050
	12.9	360000	345000	330000	320000	305000	280000	255000	1250	1500	1650	1750	1900	2150	2450
<u>t</u>		+	1.111.111	1	1	1	1	+		1.204		1	1		

Tafel 2. Spannkräfte F_{sp} und Spannmomente M_{sp} für Taillenschrauben mit metrischem Regelgewinde nach DIN 13, BL13

÷

٩

.

								The second s							
Alum	*Classes	Samaka	ila Fiir	N NI THE LLA					Scene	-	M	in Nm	411 m	-	1
~~~		0.00						0.000	200	1010			10.00	-	In and
		uno	0.10	0,125	0,14	0,10	0,20	0,25	0,06	0.10 1	0.125	10,14	0.10	10-00	10,20
				- and								1		1	·
	8.8	20.30	19000	18/00	18200	17400	16100	14500			40	1 4	23	<u></u>	1 38
MBx1	10.9	28500	27500	26500	25500	24500	22500	20500	30	33	30	38	41	47	54
	129	34000	33000	31 500	30500	29500	27000	24500	36	39	44	45	50	57	65
												<u> </u>			÷
	8.8	31500	30500	29000	28500	27000	25000	22600	41	- <b>-</b> >	50	53	57	65	74
M10×1,25	10.9	44500	43000	41000	40000	385001	35000	32000	58	63	π	74	80	1 91	105
	12.9	53000	52000	49500	48000	46000	42500	38000	69	75	84	89	96	109	725
	99	48000	46500	44.500	43500	41500	18.500	24 500	77	81	80	20	107	116	1 135
1417-1 75	-0.0	68000	- ccm	5.000	61000	60000	SAMO	48500	107	117	175	170	145	185	100
لىغرا×غا Ni	10.3	00000	20000	75000		2000	5=000 j	F2000		1.76	160	1 100	1 170	100	1 776
	12.9	aiuu	19000	/5000	/3000		05000	36000	144	122	130	100	1.0	1 195	443
	8.8	45 500	44000	42000	41000	390001	35000	32 500	70	77	85	91	97	: 111	1 130
M12x1,5	10.9	64000	62000	59000	57000	55000	51000	45 500	99	108	120	125	135	1 155	1 180
	12.9	77000	74000	71000	69000	66000	61000	55000	119	130	145	155	165	185	215
	·											1			
	8.8	65000	63000	60000	<b>59000</b>	i 56000	52000	47000	116	i 125	140	150	160	185	210
M14x1,5	10.9	92000	( 8900C i	85000	83000	79000	73000	66000	165	180	200	210	225	260	300
	12.9	110000	107000	102000	99000	i 25000 ¹	88000	79000	195	: 215	240	250	270	310	360
	<u>.</u>		ļ'	<u> </u>	<u> </u>	<u></u>	<u> </u> '	1	<b> </b>		<u> </u>	<u> </u>	! 	†	<u> </u>
	8.8	88,000	85000	81 000	79000	76000	70000	63000	175	195	215	230	245	280	320
M16x1,5	10.9	124000	120000	115000	111000	107000	39000	89000	250	i 270	300	320	340	390	450
	12.9	148000	144000	137000	134000	128000	118000	107000	300	330	1 360	1 380	410	470	5-0
					100000	i 00.000		92000	200			220	- 260	1 410	: 470
	0.0	1.000	111000	1.100000	145000	1 33000		1 03000	200	200	1 310	1 300	1 300	570	560
MISKI,5	10.9	101000	100000	1 143000	145000	140000	129000	116000	1 200	. 720		400	500	210	1 000
	12.9	193000	187000	179000	174000	157000	154000	139000	ىرىھ ا	470	530	560	600	580	1 790
	8.8	145000	140000	134000	131000	1 126000	116000	1105000	360	: 390	430	i 460	i 500	570	650
M20x1.5	10.9	203000	197000	189000	1184000	177000	163000	147000	500	550	610	650	1 700	800	920
	129	744.000	277 000	777000	220.000	712000	196000	177000	600	550	1 770	780	840	950	1100
				22.000		12.2000	1								
	1 8.8	178000	172000	165000	161000	155000	143000	1 129000	480	530	580	620	i 670	760	880
M22x1,5	10.9	250000	242000	232000	226000	: 217000	201000	181000	670	1 740	1 820	870	1 940	11070	1240
	12.9	300000	290000	280 000	1 270 000	1 260000	241000	1218000	1 810	890	990	1050	1130	11300	1500
					<u></u>				<u> </u>						
	8.8	203000	197000	168000	183000	176000	162000	146000	600	660	730	1 780	830	950	1100
M24x2	110.9	285000	275000	265000	1255000	247000	228000	206030	850	930	i 1030	1090	1170	1350	1550
	12.9	340000	330000	315000	310000	295000	275000	247000	1020	1110	1240	1300	1400	11600	1850
	1.00		-	1		1		1		1	1.0000	1	1	1	lean
	8.8	285000	255000	245000	238000	1229000	211000	191000	870	960	1070	1130	1220	1400	1600
M27x2	10.9	370000	360000	345000	335000	320000	295000	270000	1230	1 1350	1 1500	1600	1700	1950	2250
	12.9	445000	430000	415000	400000	385000	355000	320000	1500	1600	1800	1900	2050	2350	2700
	88	1 330000	120000	310000	200000	200000	265000	240000	1770	1360	1 1600	11000	11700	11050	17750
M 20-2	10.0	465000	450000	435000	420000	405000	1775000	240000	1700	1000	2100	2200	2400	1 2700	2150
	17.0	550000	540000	570000	505000	495000	460000	406000	2000	2750	1 2600	2000	12000	2700	13750
1	14.3	1.000	1.2000	10000	1.22200		-20000	-02000	1 4000	1 4430	2500	14030	2000	13630	12120

Tafel 3. Spannkräfte F_{sp} und Spannmomente M_{sp} für Schaftschrauben mit metrischem Feingewinde nach DIN 13, Bl. 13

.

•

٩.

:

Abm.	Klasse	Scennic.	atte F _{an} in	n N für µ _c	•				Spenn	morner		in Nm	tür ser	•	.
		0,08	0,10	0,125	0,14	0,16	0.20	0,25	0.08	0,10	0,125	0,14	0,16	0.20	0.25
	8.8	15000	14400	13700	13300	12700	11700	10500	15,5	17,0	19,0	20,0	21,5	24,5	28.0
M8 = 1	10.9	27 000	20300	19300	18700	17900	16400	14700	22.0	24,0	27,0	28,0	30,0	34,0	40,0
	12.9	25000	24300	23100	22400	21 500	19700	17700	26,0	29.0	32.0	34,0	36,0	41,0	48,0
	8.8	23200	22400	21 300	20600	19700	18100	16200	30	33	36	38	41	47	54
M10x1,25	10.9	32500	31 500	30000	29000	28000	25 500	22800	42	46	51	54	58	66	76
	12.9	39000	37500	36000	35000	33500	30500	27 500	50	55	61	65	70	79	91
	8.8	38000	34 500	33000	32000	31 000	28000	25500	54	80	66	70	76	85	99
M12x1,25	10.9	51 000	49000	46500	45000	43500	39500	35500	77	84	93	<b>9</b> 9	106	121	140
	12.9	61 000	59000	56000	54000	52000	47 500	42500	92	101	.12	119	130	145	170
	8.8	33 500	32000	30500	29 500	28 500	25000	23300	51	56	6Z	66	זל	80	93
M12x1,5	10.9	47000	45000	43000	41 500	40000	36500	32500	72	79	87	92	99	713	130
	12.9	55000	54000	51 000	50000	48000	44000	39500	86	9-	105	111	119	135	155
	8.8	49000	47 500	45000	44000	42000	38500	34 500	87	95	105	112	:20	135	160
M14x1,5	10.9	69000	67000	64000	62000	59000	54000	48500	122	135	150	155	170	195	220
	12.9	830001	80000	76000	74000	71 000	65000	58000	145	160	180	190	205	230	270
	8.8	64 000	62000	59000	57000	\$5000	50000	45000	130	T40	155	165	175	200	235
M16x1,5	10.9	90000	87000	83000	83000	77000	71000	63000	180	195	220	230	250	280	<u>  330</u>
	12.9	108000	104000	99000	96 000	92000	85000	76000	220	225	260	280	300	340	i 390
	8.8	87 000	84000	80000	77 000	74000	68000	61000	190	210	235	250	270	300	350
M18x1,5	10.9	122000	118000	112000	109000	105000	96000	86000	270	300	330	350	380	430	490
	12.9	146000	141000	135000	131,000	125000	115000	103000	320	360	400	420	450	510	590
	8.8	113000	109000	104.000	101 000	97000	89000	80000	280	300	340	360	390	440	510
M20×1,5	10.9	159000	154000	147000	142000	137000	126000	113000	390	430	480	500	540	620	1 710
	12.9	191 000	184000	176000	171 000	164000	151000	136000	470	510	570	600	650	740	860
	8.3	134000	130000	124.000	121 000	116000	106000	95000	360	400	440	470	500	570	660
M22×1,5	10.9	189000	183000	175000	169000	163000	149000	134000	510	560	620	660	700	800	930
	12.9	227000	219000	209000	203000	195000	179000	161000	610	670	740	790	850	970	1110
	8.8	157000	151000	144.000	140000	134000	123000	111000	460	510	560	600	640	730	840
M24×2	10.9	220000	213000	203000	197000	189000	174000	156000	650	710	790	840	900	1030	1180
	12.9	265000	255000	244.000	236000	227 000	208000	187000	780	850	950	0101	1080	1230	: 1400
	8.8	201 000	194000	185000	180000	172000	158000	142000	660	730	810	860	920	1050	1210
M27×2	10.9	280,000	275000	260000	255000	240 000	225000	200000	930	1020	1140	1200	1300	1500	1700
	12.9	340000	325000	310000	305000	290000	255000	240000	1120	1230	1350	1450	1550	1750	2050
	8.8	260000	250000	241 000	234000	224000	205000	185000	950	1050	1160	1230	1350	1500	1750
M30x2	10.9	365000	355000	340000	330000	315000	290000	260000	1350	1450	1650	1750	1850	2150	2450
	12.9	440000	425000	405000	395000	380000	350000	315000	1600	1750	1950	2100	2250	2550	2950

Tafel 4. Spannkräfte F_{sp} und Spannmomente M_{sp} für Taillenschrauben mit metrischem Feingewinde nach DIN 13, BI. 13

.....

_____

		Oberfläc ع) بير: ۵ اک بير: ۲	the I Schraubenkopf- u Schraubengewind		Oberflache 11 gegen Werkstuck gegen Muttergewinde	
	Scahl, geschwar	zt oder Zn-phos	shutiert	Staht	Stahi	
	gepreßz gerolit	gedreht gescheitten	geschliften	6 um	verzinkt 6 µm	
	0,73 bis 0,19 0,10 bis 0,18 0,16 bis 0,22	0,10 bis 0,18 0,10 bis 0,18	0,16 bis 0,22 0,10 bis 0,18 0,16 bis 0,22	0,08 bis 0,16 0,10 bis 0,16 0,08 bis 0,16	0,10 bis 0,18 0,10 bis 0,18 0,10 bis 0,18	Stahl, geweizt gehobelt, gefrast, gedrefrt, geachnitten geachliffen
=	0,10 his 0,18 0,16 his 0,22	0,10 bis 0,18	0,10 bis 0,18 0,16 bis 0,22	0,08 bis 0,16 0,08 bis 0,16	0,10 bis 0,18 0,10 bis 0,18	GG , gehobelt, gefrast, gedreht, geschritten GTS, geschliffen
hicht geü	0,08 bis 0,16	0,05 bis 0,15	0,08 bis 0,16	0,12 brs 0,20 0,12 bis 0,16		Stahl, verkadmet 6 µm verkadmet, Innengewinde
ľ	0,10 bis 0,18	0,10 bis 0,16	0,10 54 0,20	T	0,16 bis 0,20 0,10 bis 0,18	verzinkt 6 µm verzinkt, innengewinde
	0,12 bis 0,20 0,10 bis 0,18		0,10 bis 0,20			(geschiffen, gewalzt),phosphatiert (spanend bearbeitet),phosphatiert
	0,08 bis 0,20		0,08 bis 0,20			Al-Mg-Legierungen
tiock th	0,08 bis 0,16 0,08 bis 0,14 0,10 bis 0,18 0,08 bis 0,16		0,08 bis 0,16 0,08 bis 0,14 0,10 bis 0,18 0,08 bis 0,16	0,16 bis 0,24 0,12 bis 0,16	0,20 bis 0,30 0,12 bis 0,20	Stahl, verkadmet 6 µm verkadmet, Innengewinde verzinkt 6 µm verzinkt, Innengewinde
mit Kleber	0.18 bis 0.30 **)					Statel, GG, GTS geschnitten

-----

a server a server a server server

Tafel 5: Reibungszahlen für verschiedene Oberflächen- und Schmierzustände *)

٠

٠

____.

.

· _ --- --- · · · · · ·

*) In den Tafeln 1 bis 4 sind für die Ermittlung der Spannkraft  $F_{sp}$  die Reibungszahl  $\mu_{G,m,n}$  und für die Ermittlung des zugehörigen Spannmomentes  $M_{sp}$  ( $M_A \approx 0.9 M_{sp}$ ) die Reibungszahl  $\mu_{Kmn}$  zu Grunde zu legen (bzw.  $\mu_{ges.min}$  wenn  $\mu = \mu_{K}$ ) **) für Flüssigkunststoffe und mikroverkapselte Kleber

-

#### Tafel 6. Abschätzen des Durchmesserbereichs von Schrauben

1	2	3	4					
Kraft in N	Nenndurchmesser ⁴ in mm							
	Festig 12.9	keitski 10.9	8.8					
250 400 630 1000 2500 4000 6300 10000 10000 10000 160000 25000 40000 63000	3 3 4 5 6 8 10 12 16 20 24 30 36	3 3 4 5 6 8 10 12 14 16 20 27 36	3 4 5 5 8 8 10 14 16 20 24 30					

#### Beispiel:

e.

Eine Verbindung wird dynemisch und exzentrisch durch die Axielikraft  $F_A = 8500 \text{ N}$ belastet. Die Schraube mit der Festigkeitsklasse 12.9 soll mit Drahmomentschlussel montiert werden.

- A 10000 N ist die nächst größere Kraft zu F_A in Spelte 1
- B 2 Schritte f
  ür "exzentrische und dynamische Axielkraft" f
  ühren zu F_{Mmin} = = 25000 N
- C 1 Schritt für "Anziehen mit Drehmomentschlüssel" führt zu F_{Mmäk} = 40.000 N
- D Für F_{Minute} = 40000 N findet men in Soelte 2 (Festigkeitsklasse 12,9): M 10

A Wahle in Spalte 1 die nächst größere Kraft zu der an den Verschraubungen angreifenden Betriebskraft FA. 8 Die erforderliche Mindestvorspennkraft F_{Mmen} ergibt sich, indem men von dieser Zahl weitergeht um: 4 Schritte für statische oder dynamische Querkraft oder 2 Schritte für dynamisch und extentrisch angreifende Axialkraft c oder ÷., 1 Schritt für dynamisch und zantrisch oder statisch und exzentrisch angreifende Betriebskraft FA ١ŕz < oder O Schritte für statisch und zentrisch angreifende Axialkraft 1 F. C. Die erforderliche maximale Vorspennkraft  $F_{\rm Mmax}$  ergibt sich, indem man von dieser Kraft F_{Mmin} weitergent um:

2 Schritte für Anziehen der Schraube mit einfachem Drehschrauber, der über Nachziehrnoment eingestellt wird - oder

1 Schritt für Anziehen mit Drehmomentschlissel oder Prazisionsschrauber, der mittels dynamischer Drehmomentmessung oder Langungsmessung der Schraube eingestellt und kontrolliert wird – oder

9 Schritte für Anziehen über Winkelkontrolle in den überelestischen Bereich oder mittels Streckgrenzkontrolle durch Computersteuerung.

D Neben der gefundenen Zahl steht in Spalte 1 bis 4 die erfordertiche Schraubenabmessung in mm für die gewehlte Festigkeitsklasse der Schraube.

> Tafel 7. Richtwerte für den Setzbetrag pro Trennfuge für zeitlich veränderliche Betriebskrafte (Einschränkungen s. Abschn. 4.4). Das Gewinde zählt als Trennfuge!

Anzshi der Trennfugen leinschließlich Gewinde)	Setzbetrag in µm für Klemm- lange I _K /d =								
	T	2,5	5	10					
2 bis 3	T	1,5	2	2,5					
4 brs 5	0.75	1	1,25	1,5					
6 bis 7	0,5	0.7	0,9	1.1					

Tafel 8. Kraftverhältnis  $\Phi_{\rm K}$ 

Schaftschrauben



Taillenschrauben

l



Tafel 9. Nachgiebigkeit der verspannten Teile
Tafel 10. Längenverhältnis für die Trennfuge der excentrischen vorgespannten und nicht belasseten Verbindung



-----

Taifel 11. Steigung, Spannungsquerschnitt, Kernquerschnitt und Kräfte  $F_{0,2}$  für Schaftschrauben mit metrischem Regel- und Feingewinde nach DIN 13, BI. 13

àb	Scei	Som-	Kern-	Kraft an der Mindest-Streck-				
-	gung	nunger	que-	grenze F _{0.2} = r _{0.2} A ₅				
sung	i T	Cuer-	SCHWITE	bei Festigkeitsklasse nach				
-	1	SCHOICE		DIN/ISO 898				
	1	Ac	A.2	8.8	10.9	12.3		
	mm	mm ²	<del></del>	N	N	N		
Metrisches Regelgewinde								
M 4	0.7	8,78	7,75	5600	7900	9500		
M 5	0,8	14,2	12,7	9100	12800	15300		
3 M G	1,0	20,1	17.9	12900	18100	21 700		
15471	1.0	28.9	26.2	18500	26000	31000		
M 8	1.25	36.6	32,8	23400	33000	39500		
M TO	1,5	58.0	52,3	37000	52000	63000		
M 12	1.75	84,3	76.2	54000	76000	91000		
M 14	Z.O	115	105	74000	103000	124000		
M 16	2,0	157	144	100000	141000	170000		
M 18	2.5	193	175	122000	174000	208000		
M 20	2.5	245	225	157000	220,000	265000		
M 22	2,5	303	282	194000	275000	325000		
M 24	3.0	353	324	226000	320000	380000		
M 27	3.0	459	421	295000	415000	495000		
M 30	3.5	561	519	360,000	505000	£05000		
Metrisches Feingewinde								
M8	11,0	39.2	35.0	25000	35 500	42500		
10	1,25	61,2	56.3	39000	55000	66000		
M 12	1,25	92,1	86,0	59000	83000	99000		
M 12	1,5	88.1	81,1	56000	79000	95000		
M 14	11,5	125	176	80000	112000	135000		
34 16	1.5	167	157	107000	150 000	180000		
M 18	1,5	216	205	138000	194000	233000		
M 20	: 1,5	272	259	:74000	245000	295000		
M 22	1.5	333	319	213000	300 000	360000		
34 24	i 2,0	384	365	246000	345000	415000		
M 27	2.0	496	473	315000	445000	535000		
M 30	2,0	621	596	395000	560 000	670000		

¢

Tafel 12. Steigung, Taillenguerschnitt, Kernguerschnitt und Krafte  $F_{0,2}$  für Taillenschrauben mit metrischem Regel- und Feingewinde nach DIN 13. Bl. 13

AD	Sce-	Tailen-	Tarien-	Kraft an der Mundest-Stri				
(T145-	gung	durch-	Quer-	grenze * 0.2 = "0.2 ^A S				
sung	<b>!</b>	messer	SCRIMIT	ber Festigkeitsklasse nach				
	_	d_h13		DINISO	1096 1:29			
•	~	(0.9-d_)	ATmin=AS	8.8	10.9	12.9		
		നന ്	mm ²	N	N	N		
Metrisches Regelgewinde								
M4	0,7	2,8	6.2	3950	5600	6700		
M 5	0,8	3,6	10,2	6 500	9200	11000		
MB	1,0	4,3	14,5	9 300	13000	15700		
[M7]	1.0	5,2	21,2	13600	19100	22900		
M 8	1,25	5,8	26.4	16900	23800	28500		
	1,5	7,3	41,8	27000	37500	45000		
M 12	1,75	8,9	62.2	40 000	56000	67000		
M 14	2.0	10,5	86,5	55 500	78000	92000		
M 16	2.0	12,0	113	72000	102000	122000		
M 18	2,5	13,5	143	92000	129000	154000		
M 20	2.5	15	177	1113000	: 159000	191000		
M 22	2,5	17	227	145000	204000	245000		
M 24	3,0	18.5	269	172000	242000	290000		
M 27	3.0	21	346	221 000	1310000	275000		
₩ 30	3.5	23	415	265-000	375000	450 000		
Metrisches Feingewinde								
MB	1,0	6.1	29.2	18700	26500	31 500		
M 10	1,25	7,6	45.3	29000	41000	49000		
M 12	1,25	9,4	69,4	44 500	62000	75000		
M 12	1,5	9,1	65.0	41 500	58000	1 70000		
M 14	1,5	11.0	95.0	61 000	85000	103000		
M 16	1,5	12,5	123	79000	111000	:133000		
81 M	1,5	14,5	165	106000	. 148000	. 178000		
M 20	į 1,5	16.5	214	137900	. 193000	231000		
M 22	1,5	18.0	254	163000	229000	275000		
M 24	20	19.5	298	191 COO	270000	320 000		
M 27	2.0	22,0	380	243000	340.000	410000		
M 30	120	25.0	491	315000	440000	50000		

Tafel 13. Richtwerte für die Dauerhaltbarkeit von schlußvergütaten Schrauben der Festigkeitsklassen 8.8, 10.9, 12.9 (Heigh-Diagramm)

_____

- -

٩

(

(

ъ



Tafel 14. Grenzflächenpressung  $\rho_{\rm G}$  in N/mm² für gedrückte Teile verschiedener Werkstoffe

Werkstoff	Anziehen				
	matorisch	von Hand			
St37	200	300			
Sx50	330	500			
C45V	600	900			
GG-25	500	750			
GD MgAI 9	80	120			
GKMgAI9	80	120			
GKAISI6Cu4	120	180			

•

Tafel 15. Faktoren, die die Dauerhaltbarkeit im positiven Sinne beeinflussen

1. Verspannungsverhältnis		1	Dauerhaltbarkert der Schraube
1.1. Vergroßern der Längs- und B Dehnschrauben Iange Schrauben Nochfeste Schrauben Durchsteckschrauben mit Mi Aufsetzen einer Hülse Vermindern des E-Moouls 1.2. Versteifen der verspannten T konstruktive Maßnahmen	iege-Elastizitat durch attern ieile durch	3.1.	Formeinflüsse an Kopf und Schaft durch Vergroßern der Kopfsteifigkeit große Radien Fasen am Durchgangsloch Formeinflüsse am Gewinde durch große Radien am Fuß tragende Gewindezahne weichen Gewindesuslauf
Verwenden von Werkstoffen durch Trennung von Trag- u	mit großern E-Modul sowie nd Dicht-Funktionen	4	Werkstoffe und Herstellung
1.3. vermeiden von Biegung durt Vermindern der Exzentrizitz Erhohen der Vorspennkraft     1.4. Erheiten der Restklemmkraf Vermeiden von Setzen Vermeiden von Losdrehvorg	tr t t durch angen	4.1.	Werkstoffe große Zähigkeit hohe Festigkeit Vermeiden von Ent- und Aufkohlungen sowie Verzunderungen ununterbrochener Faserverlauf
2. Einschrzubbedingungen		4.2.	Oberflächenverbesserung durch Kaltverfestigung Glätten und Polieren Aufbrungen von Figenspangungen
2.1. Gleichmeßige Spannungsvert Schraubenwerkstoffe mit kle geeignete Mutterformen geeignete Gewindeprofile	ailung durch Jinem E-Modul		Vermeiden von Elektropolieren
Steigungsdifterenz zwischen gewinde	Schrauben- und Muttern-	5.	Chemische Oberflacheneunflüsse
hohe Vorspannkraft elastische Gewindeeinsatze		5.1.	Vermeiden von Korrosion (jedoch ungunstiger Einfluß von gaivanischen Schutzschichten)
Z.I. Gewindetoleranzen (ausreichendes Gewindespiel	1		

 Tafel 16. Empfohlene Mindest-Einschraubtiefen für Sacklochgewinde

.

• • •

|

Schraubenferrigkeinskilasse	83	201 8.8	601
Gewingsteintreit d/P	62	29 <9	29
AlCuMg1 F40 GG-22 St 37 St 50 C45 V	1,1 d 1,0 d 1,0,0 d 1,0 d 1,0,	1,44 1,74 1,75 1,04 1,04 1,04 1,04 1,04 1,04 1,04 1,04	1 4 4 1 2 4 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

## Tafel 17. Richtwerte für den Anziehfaktor a_A

•

Anthenfaktor a A	Anzythertanren	Bemerkungen	
Ξ	Streckgrenzgestevenes Anziehen motonsch	Die Vorspannikraftstretuing wird u die Stretuing der Strectignenze im Schrauben werden hier für Fumio	berwegend bestimmt durch wrbauten Schraubenlos. Die dimensioniert: der Anzeh-
ŧ	Dretwinkelgesteuertes Anziethen motorisch oder menuell	faktor a_ emfait deshalb fur dies geklammerten Werte dienen dem V naugken mit den folgenden Verta	e Anzehmethoden; die ein- Vergieich der Anziehge Arten.
1,2	Anziehen mit Langungsmessung der gandhten Schraube	Autwandiges Vartanren, nur sehr (	begren zi anwendbar.
4. bs 1. 3.	Drehmomentgesteuertes Anzehen mit Dreh- momentodhäsel oder Prazeions-Drenschrauber mit dynamischer Drehmomentmessung. Versuchsmeßige Bessimmung der Sollanziehmo- mente am Original-Verschraubungsteil, z.B. durch Lengungsmessung der Schraube	Nedrogere Werts fur: große Zahl von Einstel- bzw. Kontroliversuchen (z.8. 20). Gernge Streuung des abge- gebenen Momentes. Elektronische Dreimmonstbe- genzung wehrend der Montage bei Prazisions-Orehichraubern.	Needingene Werte fur.
φ, τ α	Dreimomentgestauertes Anziehen mit Dreimoment- schlidsel oder Prazsonsdrehtschrauber mit dyne- mischer Drehmomentmessung. Bestimmung des Solfanzerhmomentes durch Schat- zen der Reibungszahl (Oberflächen- und Schmer- verhättniss).	Naidrigere Warta Kur: a ganaue Drehmomantschiue- sel (z.B. mrt MecLuhr) a grechmaßuges Anziehen Prazisionsdrehischrauber Mohare Werte für: signalgebende oder austrink- tende Drehmomentschlussel	Historie Drehwinker, G.h. relativ sterle Vercindun- gen relativ weiche Gegenlage Gegenlagen, z.e. phos- phetiert Meinere Werte fie (bei): große Drehwinkei, d.h.
1,7 bit 2,5	Drehmomenngesteuertes Anziehen mit Drehschrauben Einsreiten des Schraubers mit Nachzehmonnent, das aus Solienbehmoment (für geschatzte Re-bungszahl) und einem Zuschlag gebilder vierd.	Nedrogere Werte für: große Zahl von Kontrol- wersuchen (Nachziehmo- ment) Schrauder mit Abschatt- kuppdrungen	retariv nachguebuge Ver- bridungen sowe Fenge- winde e große Hante der Gegenlage, verbunden mit nauher Ober- flache Formabweichlungen
4	Impuispesteuertes Anziehen mit Schlagichrauber. Einstellen des Schraubers über Nachziehmoment – we oben	Nedrigere Werts fur: große Zahl von Einstellver- suchen (Nachziehmorrant) auf horizontalem Ast der Schraudercharaktenistik sperifere Impulsubertra- gung	

J

|
|
|

Tafel 18. K-Faktoren für die schnelle Berechnung des Anziehmomentes für  $\mu_{\rm G}$  und  $\mu_{\rm K}$ 

.

.

_____

٠

ί

Ĺ .

(

-

Faktor K = $\left(0.16P + 0.58d_2^{-\mu_G} - \frac{D_m}{2}\mu_K\right)$									
	Kopfreibungszahl #K 0.08   0,10   0.125   0,14   0,16   0,20   0,25								
	0,08	R F	0,118 0,112	0,131 0,125	0,148 0,142	0,1 <b>58</b> 0,152	0,171 0.166	0,198 0,192	0,231 0,225
Gewindereitungszah µG	0,10	A F	0,1 <b>28</b> 0,123	0,142 0,136	0,159 0,153	0,169 0,163	0,182 0,176	0.209 0.203	0,242 0,237
	0,125	R F	0,142 0,137	0,155 0,150	0,172 0,1 <b>6</b> 7	0,182 0,177	0,195 0,190	0,222 0,217	0.255 0,250
	0,14	R F	0,150 0,145	0,163 0,158	0,180 0,175	0,190 0,185	0,203 0,198	0,230 0,225	C,263 0,258
	0,16	R F	0.160 0,156	0,173 0,1 <i>8</i> 9	0,190 0,185	0,200 0,196	0,214 0,209	0,240 0,234	0,274 0,269
	0,20	RF	0,181 0,177	0,195 0,197	0,211 0,208	0,221 0,218	0,235 0,231	0,261 0,258	0,295 10,291
	0,25	R F	0,208 0,205	0,221 0,218	0,238 0,235	0,248 0,245	0,261 0,258	0,288 0,285	0.231 0.318
Ma	Maximales Anziehdrehmoment $M_{A,mex} = \mathcal{K} \cdot \mathcal{F}_{M} \cdot \mathcal{J}$ in itm								

FM in Nigewunschte Vorspennkraft, wenn 90 %ige Streckd in m Nenndurchmesser der Schraube

R = Regelgewinde, F = Feingewinde

÷

## Symbols and Terminology.

- - -----

A Cross sectional area, general.

- Ap Cross section, cross sectional area of bolted prismatic parts when they fulfill the conditions of a "bending body" in the case of eccentric clamping and loading.
- Among Substitutional area, cross sectional area of a hollow cylinder with the same elastic resilience as that of the clamped parts.
- A. Cross sectional area of a cylindrical element of a bolt.
- An Nominal cross section.
- Ar Bolt head or nut bearing area.
- As Stress area of the bolt thread according to DIN 13:

$$A_{\rm HS} = \frac{\pi}{4} \cdot \left(\frac{d_2 + d_3}{2}\right)^2$$

 $A_{\tau}$  Cross section of reduced shank area in a bolt.

 $A_{\rm D}$  Smallest cross section of a bolt shaft.

- $A_{22}$  Cross sectional area at minor diameter of bolt thread.
- C Spring Constant.

 $D_{\alpha}$  External diameter of a clamped sleeve.

- $D_{P}$  Hole diameter of the clamped parts = internal diameter of the substitutional cylinder.
- $\mathcal{D}_{rm}$  Effective friction diameter of the bolt head or nut bearing area.
- E Young's modulus.
- $\mathcal{E}_{r}$  Young's modulus of clamped parts.
- E_a Young's modulus of bolt materials.
- F Force, general.
- $F_{P}$  Axial force, axial working load or axial component of the working load  $F_{P}$ .

Fand Eccentric axial force at the lift-off limit.

- $F_{AB}$  Upper limit value of an alternating axial force  $F_{AB}$
- $F_{Au}$  Lower limit value of an alternating axial force  $F_{Au}$

- $F_{\Xi}$  Working load in any direction.
- $F_{\rm HC}$  Clamping force.
- $F_{Read}$  Clamping force at the lift-off limit.
- $F_{\text{Korr}}$  Clamping force which is necessary for sealing functions, friction contact and prevention of one-sided lift-off in the interface.
- $f_{\text{KR}}$  Residual clamping force in the interface in the case of unloading due to  $f_{\text{FR}}$  and embedding during operation.
- Fm Initial preload.
- $f_{\text{M}}$  max Initial preload for which a bolt must be designed so that in spite of imprecision in the tightening procedure or expected embedding the required clamping force is achieved and maintained in the joint.
- $F_{m,min}$  Smallest initial preload which adjusts itself in the case of  $F_{m,max}$  as a result of imprecision in the tightening procedure.
- $f_{rea}$  Portion of the axial force which unloads the clamped parts.
- $F_{\odot}$  Transverse force, working force directed transversely to the bolt axis or the transverse component of a working load  $F_{\odot}$  directed in any direction.
- Fe Bolt force.
- $F_{\Xi A}$  Portion of the axial force  $F_A$  which additionally loads the bolt.
- $F_{\text{SA.}}$  Alternating loading of the bolt by the additional force  $F_{\text{SA.}}$
- $F_{\rm SM}$  Mean value of the bolt force in the case of alternating working load.
- $F_{mp}$  Axial clamping force of the bolt with 90% utilization of the elastic limit by  $\sigma_{max}$  [90% yield load].
- $F_{\vee}$  Preload, general.
- Fund Preload at the lift-off limit.
- $F_{\text{verf}}$  Least preload which is necessary for sealing functions, friction contact and the prevention of one-sided lift-off in the interface under observation of unloading by the working force.
- $F_{\nabla m}$  Mean preload.
- $f_z$  Preload loss as a result of embedding in operation.
- $F_{P,2}$  Bolt force at the minimum elastic limit.

.

- $I_{p}$  Moment of inertia of the area  $A_{p}$ .
- *I*₁ Moment of inertia of any area.
- $I_{
  m B}$  Moment of inertia of the core cross section of the bolt thread.
- N_A Tightening torque for assembly.
- M_P Effective bending moment at the bolting position.
- $H_{\rm b}$  Bending moment at the bolting position from the eccentrically acting axial force  $F_{\rm pa}$ .
- $M_{OP}$  Effective part of the tightening torque in the thread.
- ${\it M}_{\it Rec}$  Friction moment in the bolt head bearing area.
- $M_{PD}$  Portion of  $M_{PD}$  which is taken up by the clamped parts.
- $H_{BB}$  Portion of  $H_{B}$  which is taken up by the bolt.
- $\pi_{mp}$  Tightening torque to produce preloading of a bolt equal to 90% of yield  $(F_{mp})$ .
- $M_{\tau}$  Effective torque at the bolting position in the interface.
- P Pitch of the bolt thread.
- U Location for  $\sigma = 0$ .
- $W_r$  Polar resistance moment for the surface  $A_{res}$ .
- $\mathcal{M}_{\mathfrak{B}}$  Resistance moment of the core cross section of the bolt thread.
- a Distance of the force line of application from the axis of rotation for the area  $A_{p}$ .
- b Expanse of the interface.
- d Bolt diameter = external thread diameter.
- $d_{\mu}$  External diameter of bolt head or nut bearing area.
- $d_{\rm m}$  Diameter for the clamping cross section  $A_{\rm m}$ .
- $d_{\tau}$  Shaft diameter in the case of reduced shank bolts.
- $d_{\odot}$  Diameter at the smallest cross section of the bolt shaft.
- $d_{R}$  Pitch diameter of the bolt thread.
- f Length change under a force F.
- $f_1$  Length change of any part i.

- $f_{PA}$  Length change of the clamped parts by  $F_{PA}$ .
- $f_{ren}$  Length change of the clamped parts due to load introduction over the clamped parts.
- $f_{\rm FM}$  . Shortening of the clamped parts due to  $F_{\rm M}$ .
- $f_{GA}$  Lengthening of the bolt due to  $F_{GA}$ .
- $f_{\text{son}}$  Lengthening of the bolt due to  $F_{\text{son}}$  in the case of load introduction over the clamped parts.
- $f_{\rm GM}$  Lengthening of the bolt due to  $F_{\rm M}$ .
- $f_x$  Plastic deformation due to embedding, embedding amount.
- $h_{\min}$  Plate thickness (see Figures 6, 19 and 20).
- $k_{\rm P}$  Radius of gyration for the area  $A_{\rm P}$ .
- I Length, general.
- $I_{ars}$  Substitutional length for a bolt with threading over the entire length with the same  $\mathcal{B}_{\Theta}$  as any bolt.
- I. Length of a cylindrical individual element of the bolt.
- In Clamping length.
- Number of bolts in a flange joint.
- *n* Factor, which when multiplied with the clamping length  $J_{\kappa}$ , gives the thickness of the areas of the clamped parts unloaded by the axial force  $F_{\alpha}$ .
- *p* Bearing stress.
- Po Allowable bearing stress under the bolt head.
- s Distance of the bolt axis for the axis of gyration for the area  $A_{\rm B}$ .
- t Configuration of the bolts in the case of a multi-bolted joint.
- $\alpha$  Perimeter distance in clamped prisms from the axis of rotation for the area  $A_{20}$  (in the direction A-A).
- $\nu$  Perimeter distance in clamped prisms from the axis of rotation for the area  $A_{\rm P}$  (opposite the direction A-A).
- a Angle of pressure of the bolt thread.
- a A Tightening factor Fy max / Fy min.

B Elastic bending resilience.

 $\mathcal{B}_*$  Elastic bending resilience of any part of the bolt.

Bo Elastic bending resilience of the screwed-in thread.

 $\mathcal{B}_{\mathrm{H}}$  — Elastic bending resilience of the bolt head.

- $\beta_{\rm P}$  Elastic bending resilience of the clamped parts.
- $\beta_{\rm P}$  Elastic bending resilience of the bolt.
- Y Tilt or angle of inclination of clamped parts as a result of eccentric loading.
- $\gamma_{P}$  Angle of inclination of the clamped prisms.

 $\gamma_{s}$  Angular deformation of the bolt.

δ Elastic resilience.

 $\delta_{\sigma}$  Elastic resilience of the screwed-in thread.

 $\delta_i$  Elastic resilience of any part i.

 $\delta_{\rm H}$  Elastic resilience of the bolt head.

- δ_m Elastic resilience of the clamped parts in the case of concentric clamping and concentric loading.
- $\delta_{-}$  Elastic resilience of clamped parts in the case of eccentric clamping.
- $\delta_{\mu}$  ** Elastic resilience of the clamped parts in the case of eccentric clamping and eccentric loading.

 $\delta_{\rm m}$  Elastic resilience of the bolt.

 $v^{4}$  Angle of rotation in the case of tightening of a bolt.

 $\lambda = \frac{s / k_{\rm B}}{A_{\rm B} / A_{\rm max}}$ 

Length ratio for the interface of the eccentrically clamped and non-loaded joint.

#a Friction coefficient in the thread.

 $\mu^{*}$  Friction coefficient in the V-thread increased opposed to  $\mu$ .

 $\mu_{optm}$  Mean friction coefficient for thread and head bearing area.

 $\rho'$  Friction angle to  $\mu'$ .

- σ_A Stress amplitude of fatigur strength.
- $\sigma_{a}$  Fatigue loading falte nating or cycling stress] of the bolt.
- $\sigma_{\mathcal{D}}$  Tensile strength of the bolt, minimum value according to DIN 276, p. [Blatt] 3.

- $\sigma_{\Sigma}$  max Tensile strength of the bolt, maximum value according to DIN 276, p. [Blatt] 3.
- $\sigma_{\rm D}$  Fatigue strength or durability.
- $\sigma_{\rm M}$  Normal tension in the thread as a result of  $F_{\rm M}$ .
- on Mean tension.
- $\sigma_{-\infty}$  Combined tension and torsional stress.
- $\sigma_{\rm esc}$  Tension caused by the portion  $F_{\rm esc}$  of the axial force in the core cross section of the bolt.
- $\sigma_{\rm SAD}$  Tension in the bending traction thread of the bolt thread caused by the axial force portion  $F_{\rm SA}$  and the bending moment  $N_{\rm D}$  in the case of eccentric load application.
- $\sigma_{\text{see}}$  Like  $\sigma_{\text{see}}$ , but on the bending-compressive side of the bolt.
- $\sigma(x)$  Tension at position x.
- $\sigma_{0.2}$  0.2% off-set yield strength (minimum value according to DIN 267, p. [Blatt] 3).
- au Torsional stress in the thread as a result of M_{on}.
- Ø Force ratio Fea / Fa.
- $\Phi_{\rightarrow \bowtie}$  Force ratio  $\Phi_{\rightarrow}$  for load introduction under the bolt head and nut areas.
- $\Phi_{\pi\pi}$  Force ratio  $\Phi_{\pi}$  for load introduction inside the clamped parts.
- **O**_{F1} Force ratio in the case of flange-like joints.
- $\Phi_{\kappa}$  Force ratio for concentric load introduction under the bolt head and nut areas.
- $\Phi_m$  Force ratio in the case of pure moment loading by  $M_{P}$ .
- $\varphi$  Pitch angle of the bolt thread.

.

. . . . . . . . . .

Inverse resilience in the case of flanges and flange-like parts.
For geometric quantities in the case of flange joints see Figures 9 and 10.

.

-

· ----.